Two new conjectures concerning positive Jacobi polynomials sums

DIMITAR K. DIMITROV* & CLINTON A. MERLO†
Universidade Estadual Paulista, Brasil

Abstract. A refinement of a conjecture of Gasper concerning the values of (α, β), $-1/2 < \beta < 0$, $-1 < \alpha + \beta < 0$, for which the inequalities
\[\sum_{k=0}^{n} P_{k}^{(\alpha,\beta)}(x)/P_{k}^{(\beta,\alpha)}(1) \geq 0, \quad -1 \leq x \leq 1, \quad n = 1, 2, \ldots \]
hold, is stated. An algorithm for checking the new conjecture using the package Mathematica is provided. Numerical results in support of the conjecture are given and a possible approach to its proof is sketched.

Keywords and phrases. Jacobi polynomials, positive sums, Bessel functions, discriminant of a polynomial.

1991 Mathematics Subject Classification. Primary 33C45.

1. Introduction

The Jacobi polynomials are defined in terms of the hypergeometric function \(\, _2F_1 \) by
\[P_{n}^{(\alpha,\beta)}(x) = \frac{(\alpha + 1)n}{n!} \, _2F_1(-n, n + \alpha + \beta + 1; \alpha + 1; (1 - x)/2), \]

*Research supported by Brazilian Science Fundation CNPq under Grant 300645/95-3.
†Research supported by a fellowship of the Brazilian Science Fundation CAPES.
where \((a)_k = \Gamma (a + k) / \Gamma (a)\) is the Pochhammer symbol and
\[
2F_1(a, b; c; z) = \sum_{k=0}^{\infty} \frac{(a)_k (b)_k}{(c)_k} \frac{z^k}{k!}.
\]

Various special cases of the inequalities
\[
S_n^{(\alpha, \beta)}(x) := \sum_{k=0}^{n} P_k^{(\alpha, \beta)}(x)/P_n^{(\beta, \alpha)}(1) \geq 0, \; -1 \leq x \leq 1, \; n = 1, 2, \ldots \quad (1)
\]
have been proved. Fejér [11, 12] was the first to establish inequalities of this form for \(\alpha = 1/2, \beta = -1/2\) and for \(\alpha = \beta = 0\). Fejér conjectured that (1) also hold for \(\alpha = \beta = 1/2\) and this was proved independently by Jackson [16] and Gronwall [15]. Feldheim [13] proved (1) for \(\beta \geq 0\), \(\alpha + \beta \geq -2\). The importance of the latter result is justified by the fact that de Branges [7] used (1) for \(\beta = 0, \alpha = 2, 4, 6, \ldots\), in the final step of his proof of the celebrated Bieberbach conjecture. Gasper [14] proved inequalities (1) for \(\beta \geq -1/2, \alpha + \beta \geq 0\).

Note that Bateman’s integral formula (Bateman [6])
\[
\frac{P_n^{(\alpha - \mu, \beta + \mu)}(x)}{P_n^{(\beta + \mu, \alpha - \mu)}(1)} = \frac{\Gamma (\beta + \mu + 1)}{\Gamma (\beta + 1) \Gamma (\mu)} \int_{-1}^{x} \frac{P_n^{(\alpha, \beta)}(t)}{P_n^{(\beta, \alpha)}(1)} (1 + t)^{\beta} (x - t)^{\mu-1} dt,
\]
which holds for \(\mu > 0\), and \(\beta > -1\), implies the following result.

Lemma 1. If the inequalities (1) holds for \((\alpha, \beta)\), they hold for \((\alpha - \mu, \beta + \mu)\), \(\mu > 0\) as well. Hence, if (1) fail for some \((\alpha, \beta)\) they fail for \((\alpha + \mu, \beta - \mu)\), \(\mu > 0\).

On the other hand \(S_1^{(\alpha, \beta)}(x) = (\alpha + \beta + 2) (1 + x) / (2 (\beta + 1))\). Having in mind these observations, the above mentioned results of Askey and Gasper [4] and of Gasper [14] yield: Inequalities (1) hold for \(\alpha \leq 0, \beta \geq \max \{0, -\alpha - 2\}\) and \(\alpha \geq 0, \beta \geq \max \{-1/2, -\alpha\}\), and fail for \(\beta < \max \{-1/2, -\alpha - 2\}\).

In 1993 Askey [3] drew attention to (1) for the rest of the \((\alpha, \beta)\)-plane, namely, for \((\alpha, \beta)\) in the parallelogram \(D_1 = \{-1/2 \leq \beta < 0, -2 \leq \alpha + \beta < 0\}\). It was proved in [10] that (1) fail for \(x = 1\) and for sufficiently large \(n\), if \(|\alpha - 3/2| - 1/2 \leq \beta < 0\). The latter and Bateman’s integral (2) disprove inequalities (1) for the left hand half of \(D_1\) and \(n\) large enough. Thus the only region in the \((\alpha, \beta)\)-plane for which inequalities (1) is still to be proved or disproved is the parallelogram
\[
D = \{(\alpha, \beta) : -1/2 < \beta < 0, -1 \leq \alpha + \beta < 0\}.
\]
On the other hand, (1) hold for the upper boundary \(\{ \beta = 0, -1 \leq \alpha < 0 \} \) and fail for the lower boundary \(\{ \beta = -1/2, -1/2 \leq \alpha < 1/2 \} \) of \(D \). Hence, by Bateman’s integral, for any \(\theta \in (-1, 0) \) there exists an \((\alpha', \beta') \in D \) with \(\alpha' + \beta' = \theta \) such that (1) holds for \(\{ \alpha + \beta = \theta, \beta \geq \beta' \} \) and fail for \(\{ \alpha + \beta = \theta, \beta < \beta' \} \).

The curve formed by the points \((\alpha', \beta')\) with this property will be denoted by \(\gamma \). Also, denote by \(J_\alpha(x) \) the Bessel function of the first kind with parameter \(\alpha \) and let \(j_{\alpha,2} \) be the second positive zero of \(J_\alpha(x) \). The following conjecture is due to Gasper [14, p. 444].

Conjecture 1. The subregion \(\Delta \) of \(D \) for which the inequalities (1) holds is given by

\[
\Delta = \left\{ (\alpha, \beta) \in D : \beta \geq \beta(\alpha), \int_0^{j_{\alpha,2}} t^{-\beta(\alpha)} J_\alpha(t) \, dt = 0 \right\}.
\]

It may be pointed out that Gaspers’s conjecture is equivalent to the statement that

\[
\gamma = \left\{ (\alpha, \beta(\alpha)) \in D : \int_0^{j_{\alpha,2}} t^{-\beta(\alpha)} J_\alpha(t) \, dt = 0 \right\}.
\]

The conjecture is based on the well-known formula (see (1.8) in [3])

\[
\lim_{n \to \infty} \left(\frac{\theta}{n} \right)^{\alpha-\beta+1} \sum_{k=0}^{n} \frac{P_k^{(\alpha,\beta)}(\cos(\theta/n))}{P_k^{(\beta,\alpha)}(1)} = 2^\alpha \Gamma(\beta + 1) \int_0^{\theta} t^{-\beta} J_\alpha(t) \, dt, \quad \beta < \alpha + 1,
\]

and on the following theorem.

Theorem 1. Let \(-1 < \alpha < 1/2 \) and \(\beta > -1/2 \). Then the inequality

\[
\int_0^\theta t^{-\beta} J_\alpha(t) \, dt \geq 0
\]

holds for any nonnegative \(\theta \) if and only if

\[
\int_0^{j_{\alpha,2}} t^{-\beta} J_\alpha(t) \, dt \geq 0.
\]

The proof of this theorem for \(\alpha \in (-1, -1/2) \) is due to Askey and Steinig [5] and the case \(\alpha \in (-1/2, 1/2) \) was proved by Makai [17].

Very recently Brown, Koumandos and Wang [8, 9] verified Gasper’s conjecture for the case when \((\alpha, \beta)\) lies on the lines \(\alpha = \beta \) or \(\alpha = -1/2 \).

The objective of the present paper is to state a slight refinement of Conjecture 1 and to give numerical evidence of its truth.
2. The new conjecture

For any positive integer \(n \), set
\[
\Delta_n = \left\{ (\alpha, \beta) \in D : S_n^{(\alpha, \beta)}(x) \geq 0 \text{ for } x \in [-1, 1] \right\}.
\]

Then Gasper’s conjecture can be formulated in the equivalent form
\[
\bigcup_{n=1}^{\infty} \Delta_n = \Delta,
\]
where \(\Delta \) is defined by (3).

We state

Conjecture 2. For any positive integer \(n \), \(\Delta_{n+1} \subset \Delta_n \).

Denote by \(\gamma_n \) the boundary of \(\Delta_n \) which passes through \(D \):
\[
\gamma_n = \left\{ (\alpha, \beta) \in D : S_n^{(\alpha, \beta)}(x) \geq 0 \text{ for all } x \in [-1, 1] \text{ and every } (\alpha, \beta) \right\}
\]
with \(\alpha + \beta = \alpha_n + \beta_n, \beta \geq \beta_n \), and for some \(x \in [-1, 1] \), \(S_n^{(\alpha, \beta)}(x) < 0 \)
for \((\alpha, \beta) \) with \(\alpha + \beta = \alpha_n + \beta_n, \beta < \beta_n \).

The curve \(\gamma_n \) is well defined because of Lemma 1.

An equivalent formulation of Conjecture 2 is that \(\gamma_{n+1} \) lies above \(\gamma_n \) for any positive integer \(n \). The latter conjecture implies that of Gasper, because of (4) and Theorem 1.

In the next section we give explicit expressions for \(\Delta_2 \) and \(\Delta_3 \) or, equivalently, for \(\gamma_2 \) and \(\gamma_3 \). In Section 3 an algorithm to trace the curves \(\gamma_n \) is developed. Tables for the curves \(\gamma_n \) for \(n = 4 \) and \(5 \) are given and the graphs of \(\gamma_n \) for \(n = 2, 3, 4, 5 \) are drawn. In Section 4 we discuss an idea of how Conjecture 2 might be proved.

3. The cases \(n = 2 \) and \(n = 3 \)

In what follows we suppose that \((\alpha, \beta) \in D \). First we consider the case \(n = 2 \). Straightforward calculations show that
\[
4 (\beta + 1) (\beta + 2) S_2^{(\alpha, \beta)}(x) = a_2 x^2 + 2a_1 x + a_0,
\]
where
\[
a_2 = (\alpha + \beta + 3) (\alpha + \beta + 4),
\]
\[
a_1 = 2 (\alpha + 2) (\alpha + \beta + 3) + (\alpha + \beta + 2) (\beta + 2) - (\alpha + \beta + 3) (\alpha + \beta + 4)
\]
\[= (\alpha + 1) (\alpha + \beta + 4),
\]
\[
a_0 = 2 (\alpha + \beta + 2) (\beta + 2) + 4 (\alpha + 1) (\alpha + 2) + (\alpha + \beta + 3) (\alpha + \beta + 4)
\]
\[= 4 (\alpha + 2) (\alpha + \beta + 3) = \alpha^2 + 3\beta^2 + 3\alpha + 7\beta + 4.
\]
Obviously $S_2^{(\alpha,\beta)}(x)$ is convex and its minimum value is attained at $x_{\text{min}} = -a_1/a_2 = - (\alpha + 1) / (\alpha + \beta + 3)$. Observe that $-1 < x_{\text{min}} < 0$. Hence, $S_2^{(\alpha,\beta)}(x) \geq 0$ for $x \in [-1,1]$ if and only if it is non-negative for any real x. Since its leading coefficient is positive, then $S_2^{(\alpha,\beta)}(x)$ is non-negative if and only if its discriminant

$$(\alpha + 1)^2 (\alpha + \beta + 4)^2 - (\alpha + \beta + 3) (\alpha + \beta + 4) \left(\alpha^2 + 3\beta^2 + 3\alpha + 7\beta + 4 \right)$$

is non-positive. Thus,

$$\Delta_2 = \left\{ (\alpha, \beta) \in D : \beta \geq -3\alpha - 10 + \sqrt{9\alpha^2 + 36\alpha + 52} \right\} / 6.$$

The case $n = 3$ may be treated similarly because $S_n^{(\alpha,\beta)}(-1) = 0$ for any odd n. Set $u = (x + 1)/2$. Straightforward calculations show in fact that

$$\overline{S}_3^{(\alpha,\beta)}(u) = \frac{S_3^{(\alpha,\beta)}(x)}{u} = b_2 u^2 - 2b_1 u + b_0$$

where

$$b_2 = (\alpha + \beta + 4)(\alpha + \beta + 5)/(\beta + 1)(\beta + 2)(\beta + 3),$$

$$b_1 = (\alpha + \beta + 4)(\alpha + \beta + 6)/(\beta + 1)(\beta + 2),$$

$$b_0 = 2(\alpha + \beta + 4)/(\beta + 1),$$

and we have to characterize the values of (α, β) in D for which $\overline{S}_3^{(\alpha,\beta)}(u) \geq 0$ for each $u \in [0,1]$. Since $\overline{S}_3^{(\alpha,\beta)}(u)$ attains its minimum at $u_{\text{min}} = b_1/b_2 = (\beta + 3)/(\alpha + \beta + 5)$ and $u_{\text{min}} \in [0,1]$, then $\overline{S}_3^{(\alpha,\beta)}(u) \geq 0$ for $u \in [0,1]$ and those (α, β) for which the discriminant

$$\left(\frac{(\alpha + \beta + 4)(\alpha + \beta + 6)}{(\beta + 1)(\beta + 2)} \right)^2 - 2 \left(\frac{(\alpha + \beta + 4)^2(\alpha + \beta + 5)(\alpha + \beta + 6)}{(\beta + 1)^2(\beta + 2)(\beta + 3)} \right)$$

of $\overline{S}_3^{(\alpha,\beta)}(u)$ is non-negative. Therefore

$$\Delta_3 = \left\{ (\alpha, \beta) \in D : \beta \geq -\alpha - 5 + \sqrt{\alpha^2 + 6\alpha + 17} \right\} / 2.$$
4. An algorithm to find Δ_n

The algorithm for tracing the curves γ_n is based on the following simple fact.

Lemma 2. If $(\alpha_n, \beta_n) \in \gamma_n$, then there exists $\xi \in (-1, 1)$ for which

$$S_n^{(\alpha_n, \beta_n)}(\xi) = \frac{d}{dx} S_n^{(\alpha_n, \beta_n)}(\xi) = 0.$$

Proof. Assume that for some (α_n, β_n) the polynomial $S_n^{(\alpha_n, \beta_n)}(x)$ is positive at the points of local extrema in $(-1, 1)$. Then a continuity argument implies that there exists a neighborhood U of (α_n, β_n) such that for every (α, β) in U and for every $x \in (-1, 1)$ the polynomial $S_n^{(\alpha, \beta)}(x)$ is positive. The latter contradicts the definition of γ_n. \square

A well known necessary condition for a polynomial $p(x) = \sum_{\nu=0}^{n} a_{\nu} x^{n-\nu}$ to have a double root is stated in the following lemma. We recall that the discriminant $D(p)$ of p is

$$D(p) = a_0^{2n-2} \prod_{1 \leq i < j \leq n} (x_i - x_j)^2,$$

where x_1, \ldots, x_n are the roots (zeros) of p.

Lemma 3. The discriminant $D(p)$ of the polynomial p can be represented as a $(2n-1) \times (2n-1)$ determinant in the form

$$\frac{a_0 D(p)}{(-1)^{n-1}} = \begin{vmatrix} a_0 & a_1 & \cdots & a_{n-1} & a_n \\ na_0 & (n-1) a_1 & \cdots & a_{n-1} & \cdot \\ \cdot & \cdot & \cdots & \cdot & \cdot \\ a_0 & a_1 & \cdots & a_{n-1} & a_n \\ na_0 & (n-1) a_1 & \cdots & a_{n-1} & \cdot \end{vmatrix}.$$

Moreover, $D(p) = 0$ if and only if $p(x)$ has at least one root of multiplicity at least two.

We refer to [18, Section 1.3.3] and the references therein for the proof of this lemma and for additional information about discriminants.

Lemmas 2 and 3 immediately yield the following result.

Theorem 2. Let $S_n^{(\alpha, \beta)}(x) = \sum_{k=0}^{n} a_k (\alpha_n, \beta_n) x^{n-k}$. If $(\alpha_n, \beta_n) \in \gamma_n$, then

$$D(\alpha_n, \beta_n) := D\left(S_n^{(\alpha, \beta)}\right) = 0.$$
The basic steps of the algorithm to construct an approximation to the curve \(\gamma_n \) are:

1. Choose \(k \in \mathbb{N} \).
2. Divide the interval \([-2, 1/2]\) into \(k \) subintervals by the mesh points \(\alpha_n^{(i)} = -2 + 2.5i/k, \ i = 0, k \).
3. For any fixed \(\alpha_n^{(i)} \) find all the solutions \(\beta_n^{(i)}, \ldots, \beta_n^{(p)} \in (-1/2, 0) \) of the equation \(D \left(\alpha_n^{(i)}, \beta \right) = 0 \).
4. Find that \(s, 1 \leq s \leq p, \) for which \(S_n^{(\alpha_n^{(i)}, \beta_n^{(i)})}(x) \geq 0 \) for \(x \in [-1, 1] \) and
 \[
 S_n^{(\alpha_n^{(i)}, \beta_n^{(i)})}(\xi) = \frac{d}{dx}S_n^{(\alpha_n^{(i)}, \beta_n^{(i)})}(\xi) = 0 \text{ for some } \xi \in (-1, 1).
 \]
5. Choose \(\beta_n^{(i)} = \beta_n^{(i)} \).
6. Approximate the data \(\left(\alpha_n^{(i)}, \beta_n^{(i)} \right) \) by a smooth curve.

Table 1 in the next page contains the results of the algorithm for \(n = 4 \) and \(n = 5 \), for \(k = 50 \). The values of \(\beta_4^{(i)} \) and \(\beta_5^{(i)} \) which correspond to \(\alpha_n^{(i)} = \alpha^{(i)} = -2 + 0.05i, \ i = 0, \ldots, 50 \), are:

The graphs of the approximations to the curves \(\gamma_n \) for \(n = 2, 3, 4 \) and 5 are drawn in Figure 1 at the end of the paper.

5. An idea for proving Conjecture 2

The graphs of the curves \(\gamma_2, \gamma_3, \gamma_4 \) and \(\gamma_5 \) show that Conjecture 2 holds for \(n = 2, 3 \) and 4. It is clear that Conjecture 2 would be proved if one proves that \(S_n^{(\alpha, \beta)} \) is nonnegative on \([-1, -1]\) for any \((\alpha, \beta)\) for which \(S_n^{(\alpha, \beta)} \) is nonnegative there. Another possible idea to prove Conjecture 2 is to show that for any \((\alpha_n, \beta_n) \in \gamma_n \) the inequality \(S_n^{(\alpha_n, \beta_n)}(x) \geq 0 \) fails for some \(x \in [-1, 1] \). It turns out that for \(n = 2, 3 \) and 4 such \(x \) exists. Based on the graphs of \(S_n^{(\alpha_n, \beta_n)}(x) \) and \(S_{n+1}^{(\alpha_n, \beta_n)}(x) \) for various \((\alpha_n, \beta_n) \in \gamma_n \) we may state an additional conjecture which implies the truth of Conjecture 2, and thus, of Conjecture 1.

Conjecture 3. Let \((\alpha_n, \beta_n) \in \gamma_n \). Then there exists a unique \(\xi_n \in (-1, 1) \) such that

\[
S_n^{(\alpha_n, \beta_n)}(\xi_n) = \frac{d}{dx}S_n^{(\alpha_n, \beta_n)}(\xi_n) = 0.
\]
Moreover, there exist \(\eta'_n \) and \(\eta''_n \) with \(-1 < \xi_n < \eta'_n < \eta''_n < 1\) such that
\[
S_{n+1, m}^{(\alpha_n, \beta_n)} (x) < 0 \quad \text{for} \quad x \in (\eta'_n, \eta''_n).
\]

<table>
<thead>
<tr>
<th>(i)</th>
<th>(\alpha^{(i)})</th>
<th>(\beta_4^{(i)})</th>
<th>(\beta_5^{(i)})</th>
<th>(i)</th>
<th>(\alpha^{(i)})</th>
<th>(\beta_4^{(i)})</th>
<th>(\beta_5^{(i)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-2.00</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-1.95</td>
<td>-0.0124665</td>
<td>-0.0100482</td>
<td>26</td>
<td>-0.70</td>
<td>-0.29347</td>
<td>-0.271235</td>
</tr>
<tr>
<td>2</td>
<td>-1.90</td>
<td>-0.0248627</td>
<td>-0.020186</td>
<td>27</td>
<td>-0.65</td>
<td>-0.303304</td>
<td>-0.281463</td>
</tr>
<tr>
<td>3</td>
<td>-1.85</td>
<td>-0.0371837</td>
<td>-0.0304035</td>
<td>28</td>
<td>-0.60</td>
<td>-0.313026</td>
<td>-0.291642</td>
</tr>
<tr>
<td>4</td>
<td>-1.80</td>
<td>-0.0494251</td>
<td>-0.0406914</td>
<td>29</td>
<td>-0.55</td>
<td>-0.322637</td>
<td>-0.30177</td>
</tr>
<tr>
<td>5</td>
<td>-1.75</td>
<td>-0.0615829</td>
<td>-0.051041</td>
<td>30</td>
<td>-0.50</td>
<td>-0.332137</td>
<td>-0.311845</td>
</tr>
<tr>
<td>6</td>
<td>-1.70</td>
<td>-0.0736534</td>
<td>-0.0614439</td>
<td>31</td>
<td>-0.45</td>
<td>-0.341526</td>
<td>-0.321856</td>
</tr>
<tr>
<td>7</td>
<td>-1.65</td>
<td>-0.0856334</td>
<td>-0.0718924</td>
<td>32</td>
<td>-0.40</td>
<td>-0.350807</td>
<td>-0.331828</td>
</tr>
<tr>
<td>8</td>
<td>-1.60</td>
<td>-0.0975197</td>
<td>-0.0823791</td>
<td>33</td>
<td>-0.35</td>
<td>-0.359997</td>
<td>-0.341732</td>
</tr>
<tr>
<td>9</td>
<td>-1.55</td>
<td>-0.109331</td>
<td>-0.0928969</td>
<td>34</td>
<td>-0.30</td>
<td>-0.36904</td>
<td>-0.351576</td>
</tr>
<tr>
<td>10</td>
<td>-1.50</td>
<td>-0.121001</td>
<td>-0.103439</td>
<td>35</td>
<td>-0.25</td>
<td>-0.377995</td>
<td>-0.361359</td>
</tr>
<tr>
<td>11</td>
<td>-1.45</td>
<td>-0.132592</td>
<td>-0.1114</td>
<td>36</td>
<td>-0.20</td>
<td>-0.386843</td>
<td>-0.371079</td>
</tr>
<tr>
<td>12</td>
<td>-1.40</td>
<td>-0.144079</td>
<td>-0.124573</td>
<td>37</td>
<td>-0.15</td>
<td>-0.395585</td>
<td>-0.380734</td>
</tr>
<tr>
<td>13</td>
<td>-1.35</td>
<td>-0.155462</td>
<td>-0.135135</td>
<td>38</td>
<td>-0.10</td>
<td>-0.404222</td>
<td>-0.390324</td>
</tr>
<tr>
<td>14</td>
<td>-1.30</td>
<td>-0.166739</td>
<td>-0.145734</td>
<td>39</td>
<td>-0.05</td>
<td>-0.412754</td>
<td>-0.399847</td>
</tr>
<tr>
<td>15</td>
<td>-1.25</td>
<td>-0.177909</td>
<td>-0.156312</td>
<td>40</td>
<td>0.00</td>
<td>-0.421183</td>
<td>-0.409303</td>
</tr>
<tr>
<td>16</td>
<td>-1.20</td>
<td>-0.18897</td>
<td>-0.166881</td>
<td>41</td>
<td>0.05</td>
<td>-0.429509</td>
<td>-0.418691</td>
</tr>
<tr>
<td>17</td>
<td>-1.15</td>
<td>-0.199922</td>
<td>-0.177438</td>
<td>42</td>
<td>0.10</td>
<td>-0.437734</td>
<td>-0.428009</td>
</tr>
<tr>
<td>18</td>
<td>-1.10</td>
<td>-0.210763</td>
<td>-0.110763</td>
<td>43</td>
<td>0.15</td>
<td>-0.445858</td>
<td>-0.437258</td>
</tr>
<tr>
<td>19</td>
<td>-1.05</td>
<td>-0.221493</td>
<td>-0.198469</td>
<td>44</td>
<td>0.20</td>
<td>-0.453883</td>
<td>-0.446436</td>
</tr>
<tr>
<td>20</td>
<td>-1.00</td>
<td>-0.232112</td>
<td>-0.208998</td>
<td>45</td>
<td>0.25</td>
<td>-0.46181</td>
<td>-0.455544</td>
</tr>
<tr>
<td>21</td>
<td>-0.95</td>
<td>-0.242619</td>
<td>-0.219454</td>
<td>46</td>
<td>0.30</td>
<td>-0.469638</td>
<td>-0.464579</td>
</tr>
<tr>
<td>22</td>
<td>-0.90</td>
<td>-0.253014</td>
<td>-0.229886</td>
<td>47</td>
<td>0.35</td>
<td>-0.477371</td>
<td>-0.473543</td>
</tr>
<tr>
<td>23</td>
<td>-0.85</td>
<td>-0.263296</td>
<td>-0.240284</td>
<td>48</td>
<td>0.40</td>
<td>-0.485008</td>
<td>-0.482435</td>
</tr>
<tr>
<td>24</td>
<td>-0.80</td>
<td>-0.273467</td>
<td>-0.250643</td>
<td>49</td>
<td>0.45</td>
<td>-0.49225</td>
<td>-0.491254</td>
</tr>
<tr>
<td>25</td>
<td>-0.75</td>
<td>-0.283524</td>
<td>-0.260961</td>
<td>50</td>
<td>0.50</td>
<td>-0.5</td>
<td>-0.5</td>
</tr>
</tbody>
</table>

Table 1. The curves \(\gamma_4 \) and \(\gamma_5 \)
Finally, we recall that Askey [3] conjectured that $\beta(n)$ defined by (3) is a convex function, which is equivalent to assert that the curve γ is convex. It seems that every γ_n is a convex curve. If so, obviously γ would also be convex.

Figure 1. The curves γ_2, γ_3, γ_4 and γ_5.

References

[15] T. H. Gronwall, Über die Gibbssche Erscheinung und die trigonometrischen Summen \(\sin x + \frac{1}{2} \sin 2x + \cdots + \frac{1}{n} \sin nx \), Math. Ann. 72 (1912), 228-243.

(Recibido en febrero de 1998; revisado por los autores en septiembre de 1998)