SET-THEORETIC RELATIONS AND BCH-ALGEBRAS WITH TRIVIAL STRUCTURE

Wiesław A. Dudek
Institute of Mathematics, Technical University,
Wybrzeże Wyspiańskiego 27, 50-372 Wrocław, Poland
e-mail: dudek@math.im.pw.edu.pl
fax: (48)-(71)-22-77-51

Ronald Rousseau
Universitaire Instelling, Antwerpen,
Specials Licentia Documentatie en Bibliothewkswetenschap
Universiteitsplein 1, B-2610 Wilrijk, Belgium
and
Kath. West-Vlaanderen, Department of Mathematics,
Zoëljjk 101, B-8400 Oostende, Belgium

Abstract

In any BCH-algebra we can define a natural relation which is reflexive and anti-symmetric. This relation induces fundamental properties of a BCH-algebra, but not induces the BCH-operation in general. Moreover, some types of BCH-algebras may be obtained from other reflexive and anti-symmetric relations. We describe connections between such relations. We give also some methods of constructions of BCH-algebras from given relations.

AMS Mathematics Subject Classification (1991): 06F35, 03G25
Key words and phrases: BCH-algebra, BCI-algebra

75
1. Introduction

In 1966 Y. Imai and K. Iséki [6], defined a class of algebras of $(2,0)$-type, called BCK-algebras, which, on the one hand, generalizes the notion of the algebra of sets with the set subtraction as the fundamental non-nullary operation, and on the other hand the notion of the implication algebra [7]. BCK-algebras have many interesting generalizations such as BCI-algebras, BCC-algebras and BCH-algebras. Any such algebra has a certain natural order induced by its fundamental operation. Such order induces some properties of this operation, but this operation is not induced by this order in general. Moreover, such BCH-algebra may also be obtained from some other order. In this note we describe the connection between relations which create a BCH-algebra G and the natural order of G.

2. Orders and BCH-algebras

By an algebra $(G,·,0)$ we mean a nonempty set G together with a binary multiplication (denoted by juxtaposition) and a certain distinguished element 0. Such algebra is called a BCH-algebra (or CI-algebra [1]) if the following conditions hold:

1. $x·0 = 0$,
2. $(xy)z = (xz)y$,
3. $xy = yz = 0$ implies $x = y$.

One can prove (cf. [3], [4], [5]) that every BCH-algebra satisfies

4. $x0 = x$,
5. $0(xy) = (0x)(0y)$.

A BCH-algebra satisfying

6. $((xy)(xz))(yz) = 0$

is called a BCI-algebra. A BCH-algebra is called proper (cf. [5]) if it is not a BCI-algebra, i.e. if it does not satisfy (6).
On any BCH-algebra \((G, \cdot, 0)\) one can define the so-called **natural order** by putting

\[
(x \leq y) \text{ if } \forall z \in G (xz = y).
\]

This "order" is a reflexive and anti-symmetric relation, but, in general, it is not transitive.

Example 1. It is easily seen that \(G = \{0, a, b, c\} \) with the multiplication defined by the table

\[
\begin{array}{c|cccc}
 & 0 & a & b & c \\
\hline
0 & 0 & 0 & 0 & 0 \\
a & a & 0 & 0 & 0 \\
b & b & b & 0 & 0 \\
c & c & c & b & 0 \\
\end{array}
\]

is a BCH-algebra. It is a proper because \((ac)(bc) = (bc) \neq 0\). Its natural order is not transitive because \(a \leq b \) and \(b \leq c \) but not \(a \leq c\).

If the natural order of a BCH-algebra \((G, \cdot, 0)\) has 0 as the smallest element, then \((G, \cdot, 0)\) is called a **BCH\(_0\)-algebra**. In other words, a BCH\(_0\)-algebra is a BCH-algebra \((G, \cdot, 0)\) in which

\[
0 \cdot c = 0
\]

holds for all \(c \in G\). A BCH-algebra satisfying (8) is called a **BCK-algebra**.

The natural order of a BCK-algebra \((G, \cdot, 0)\) is a partial order on \(G\) with 0 as smallest element (cf. [7]). Moreover, any BCK-algebra \((G, \cdot, 0)\) may be considered (cf. [7]) as a groupoid \((G, \cdot, 0)\) with the natural order satisfying conditions: \(0 \leq x\), \((xy)(xz) \leq yz\), \(x0 = x\), \(x \leq y \leq z\) imply \(x = y\). Also any BCK-algebra is partially ordered by such natural order, but in this case 0 is not the smallest element in general.

On every set \(G\) equipped with a distinguished element 0 and a relation \(\rho\) we can define a binary multiplication \(\cdot\) in the following way

\[
x \cdot y = \begin{cases} 0 & \text{if } xy \\ x & \text{otherwise} \end{cases}
\]

We say that such algebra has a **trivial structure**. It is clear that any reflexive and anti-symmetric relation \(\rho\) yields a BCH\(_0\)-algebra. Any partial order on \(G\) with 0 as the smallest element defines on \(G\) the structure of a BCK-algebra.

Proposition 1. If a BCH\(_2\)-algebra \(G\) has a trivial structure obtained from the reflexive and anti-symmetric relation \(\rho\), then its natural order coincides
with \(\rho \) only in the case when \(\rho \) satisfies the minimum condition, i.e. if \(0 \rho z \) for every \(z \in G \).

Proof. If \(z \leq y \) then \(xy = 0 \). This implies \(xpy \), or \(x = 0 \). Since \(0py \) for all \(y \in G \), then \(x \leq y \) implies \(xpy \), i.e. \(\leq \rho \). Conversely if \(xpy \) then by definition \(xy = 0 \), which gives \(z \leq y \). Thus, \(\rho \subseteq \leq \) and in the consequence \(\rho = \leq \).

Example 2. We will give an example where \(\rho \neq \leq \). Let \(G = \{0, a\} \) and let the reflexive and anti-symmetric relation \(\rho \) be given by \(0\rho 0, a\rho a, \not{0}\rho a \) and \(\not{a}\rho 0 \). Then \((G, \cdot, \cdot) \) is a BCH\(_{0} \)-algebra with the trivial structure. Its multiplication is given by the following table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
</tr>
</tbody>
</table>

The natural order of \((G, \cdot, 0)\) satisfies \(0 \leq a \). Hence \(\rho \neq \leq \).

We say that a relation \(\rho \) defined on a set \(G \) with a distinguished element \(0 \) is locally reflexive if \(0\rho 0 \), and locally transitive if \(0\rho y \) and \(y\rho z \) imply \(0\rho z \).

Lemma 1. Any relation satisfying the minimum condition is locally reflexive and locally transitive.

Proposition 2. If a relation satisfying the minimum condition induces on \(G \) the trivial structure of a BCH-algebra, then it is reflexive and anti-symmetric, and coincides with the natural order on this BCH-algebra.

Proof. Assume that a relation \(\rho \) satisfies the minimum condition and defines on \(G \) a BCH-algebra \((G, \cdot, 0)\). If \(\rho \) is not reflexive, then there exists \(x \in G \) such that \(\not{0}\rho x \). But in this case we have \(x \cdot x = x \) by (9), and \(x \cdot x = 0 \), as \((G, \cdot, 0)\) is a BCH-algebra. Thus \(x = 0 \), which is in contradiction with local reflexivity.

If \(\rho \) is not anti-symmetric, then there exist \(x, y \in G \), \(x \neq y \) such that \(xpy \) and \(ypx \). Hence \(x \cdot y = 0 \) and \(y \cdot x = 0 \) by (9). But this by (7) implies \(x = y \), which gives a contradiction. Thus, any relation satisfying the minimum condition and defining a BCH-algebra must be reflexive and anti-symmetric. By Proposition 1 such relation coincides with the natural order of this BCH-algebra. The proof is complete. \(\Box \)
Corollary 1. If a relation ρ satisfies the minimum condition and induces on G the trivial structure of a BCK-algebra, then it is a partial order on G and coincides with the natural order on this BCK-algebra.

The following example shows that a BCK-algebra may not be reproduced from its natural order.

Example 3. Consider three algebras defined on the set $G = \{0, a, b, c\}$ by the following tables:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>c</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>c</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The first algebra is a proper BCK-algebra (cf. [5]). Its natural order is linear: $0 \leq c \leq b \leq a$. The BCK-algebra with the trivial structure defined on G by this order is given by the second table. The third algebra is a BCK-algebra obtained from this linear order by the construction given in [7]. It is not difficult to verify that these three algebras have the same natural order but are not isomorphic.

3. Constructions of BCH-algebras

Now we give some methods of constructions of BCH-algebras with the trivial structure from the given BCH-algebras (with the trivial structure). We start with a generalization of the construction obtained for BCK-algebras by H. Yutani [8].

Let $\{G_i\}_{i \in I}$ be a nonempty family of BCH-algebras such that $G_i \cap G_j = \{0\}$ for any distinct $i, j \in I$. In $\bigcup_{i \in I} G_i$ we define a new multiplication identifying it with a multiplication in any G_i, and putting $xy = x$ if belongs to distinct G_i. Direct computations show that the union $\bigcup_{i \in I} G_i$ is a BCH-algebra. It is called the disjoint union of $\{G_i\}_{i \in I}$ (cf. [3]).

In a general case where $\{G_i\}_{i \in I}$ is an arbitrary nonempty family of BCH-algebras, we consider $\{G_i \times \{i\}\}_{i \in I}$ and identify all $(0, i)$, where 0, is a constant of G_i. By identifying each $x_i \in G_i$ with (x_i, i), the assumption of the definition mentioned above is satisfied. Consequently, we can define
the disjoint union of an arbitrary BCH-algebra. Obviously, if all \(G_i \) have the trivial structure, then the disjoint union of \(\{ G_i \}_{i \in I} \) has also the trivial structure. Moreover, as a consequence of Theorem 5 from [3] we obtain

Proposition 3. Let \(\{ S_i \}_{i \in I} \) be an indexed family of subsets of a BCH-algebra \(G \) with the trivial structure induced by the relation \(\rho \). If

1. \(G = \bigcup S_i \),
2. \(S_i \cap S_j = \{0\} \) for any \(i \neq j \),
3. \(x \in S_i \) implies \(\{y \in G : yx = 0\} \subseteq S_i \) for any \(i \in I \),

then all \(S_i \) are subalgebras with the trivial structure induced by \(\rho_i = \rho_{S_i} \), and \(G \) is a disjoint union of \(S_i \).

Also the following two constructions are a generalization of the known constructions for BCK-algebras. These constructions may be simply translated (by (9)) for BCH-algebras without the trivial structure.

Proposition 4. Let \((G, \cdot, 0)\) be a BCH-algebra with the trivial structure induced by \(\rho \) and let \(a \notin G \). If we extend \(\rho \) to \(G \cup \{a\} \) putting \(ax = 0, \rho xa, \rho(a\bar{x}) \) and \(\rho_{ax}, \rho(xa) \) for all \(x \in G \setminus \{0\} \), then \(\rho \) induces on \(G \cup \{a\} \) a BCH-algebra with the trivial structure. This new BCH-algebra is proper iff \((G, \cdot, 0)\) is proper.

Proposition 5. Let \((G, \cdot, 0)\) be a BCH-algebra with the trivial structure induced by \(\rho \) and let \(a \notin G \). If we extend \(\rho \) to \(G \cup \{a\} \) putting \(axa, xpa \), and \(\rho(axa) \) for all \(x \in G \), then \(\rho \) induces on \(G \cup \{a\} \) a BCH-algebra with the trivial structure. This BCH-algebra is proper iff \((G, \cdot, 0)\) is proper.

4. Ideals and congruences

A nonempty subset \(A \) of a BCI-algebra \((G, \cdot, 0)\) is called an ideal iff \((i) 0 \in A, (ii) \forall x, z \in A \implies y \in A \). Obviously, any such ideal is a subalgebra of \(G \) and induced on \(G \) a congruence \(\theta \) defined by \(x \theta y \) if \(xy, yx \in A \). The set \(G/\theta = \{C_x : x \in G\} \), where \(C_x = \{y \in G : y \theta x\} \) with the operation \(C_x \cdot C_y = C_{xy} \) is a BCI-algebra. Unfortunately, this fact is not true for BCH-algebras.

Example 4. Let \(G \) be a proper BCH-algebra from Example 2 in [2]. Routine
calculations prove that \(A = \{0, b, d, f\} \) is an ideal of \(G \), but the relation \(\theta \) defined by this ideal is not a congruence because \(cd \) is not an element of \(\theta \). This gives a negative answer to the problem posed in [2]. On the other hand, one can prove that there exist congruences which are not defined by any ideal.

A special role in BCH-algebras play the congruences induced by some endomorphisms. It is not difficult to verify that the kernel of an endomorphism \(\phi \) of a BCH-algebra \((G, \cdot, 0)\), i.e., the set \(\ker \phi = \{ x \in G : \phi(x) = 0 \} \) is an ideal and the relation \(\theta \) defined by \(xy \in \ker \phi \) is a congruence, if \(\phi \) has the form \(\phi(x) = 0x \) (cf. (5)), then \(G/\ker \phi \) and \(\phi(G) \) are isomorphic BCH-algebras (cf. [3]). These algebras are medial quasigroups. All such algebras with the finite set of generators are the direct product of the so-called cyclic BCH-algebras [3]. On the other hand, \(\phi(G) \) is the largest (in the sense of inclusion) \(\varphi \)-semisimple BCH-algebra contained in \(G \). Similarly, \(\{ x \in G : \phi(x) = x \} \) is the largest Boolean group contained in \(G \).

References

Received by the editors July 10, 1994.