BOUNDARY VALUE PROBLEM WITH INTEGRAL CONDITIONS FOR A LINEAR THIRD-ORDER EQUATION

M. DENCHE AND A. MEMOU

Received 6 March 2003 and in revised form 29 July 2003

We prove the existence and uniqueness of a strong solution for a linear third-order equation with integral boundary conditions. The proof uses energy inequalities and the density of the range of the generated operator.

1. Introduction

In the rectangle $\Omega = [0,1] \times [0,T]$, we consider the equation

$$
\mathcal{E}u = \frac{\partial^3 u}{\partial t^3} + \frac{\partial}{\partial x} \left(a(x,t) \frac{\partial u}{\partial x} \right) = f(x,t),
$$

(1.1a)

with the initial conditions

$$
u(x,0) = 0, \quad \frac{\partial u}{\partial t}(x,0) = 0, \quad x \in (0,1),
$$

(1.1b)

the final condition

$$
\frac{\partial^2 u}{\partial t^2}(x,T) = 0, \quad x \in (0,1),
$$

(1.1c)

the Dirichlet condition

$$
u(0,t) = 0, \quad \forall t \in (0,T),
$$

(1.1d)
and the integral condition
\[\int_0^1 u(x,t) \, dx = 0, \quad \forall t \in (0,T). \] (1.1e)

In addition, we assume that the function \(a(x,t) \) is bounded with
\[0 < a_0 \leq a(x,t) \leq a_1, \] (1.2)
and has bounded partial derivatives such that
\[c_1' \leq \frac{\partial^k a}{\partial t^k}(x,t) \leq c_k, \quad \forall x \in (0,1), \ t \in (0,T), \ k = 1, 3, \] with \(c_1' \geq 0, \) \[\left| \frac{\partial a}{\partial x}(x,t) \right| \leq b_1, \quad \text{for} \ (x,t) \in \Omega. \] (1.3)

Various problems arising in heat conduction [4, 6, 14, 15], chemical engineering [9], underground water flow [13], thermoelasticity [21], and plasmaphysics [19] can be reduced to the nonlocal problems with integral boundary conditions. This type of boundary value problems has been investigated in [1, 2, 3, 5, 6, 7, 9, 14, 15, 16, 20, 23] for parabolic equations, in [18, 22] for hyperbolic equations, and in [10, 11, 12] for mixed-type equations. The basic tool in [4, 10, 11, 12, 16, 23] is the energy inequality method which, of course, requires appropriate multipliers and functional spaces. In this paper, we extend this method to the study of a linear third-order partial differential equation. This type of problems is encountered in the study of thermal conductivity [17] and microscale heat transfer [8].

2. Preliminaries

In this paper, we prove the existence and uniqueness of a strong solution of problem (1.1). For this, we consider the solution of problem (1.1) as a solution of the operator equation \(Lu = f \), where \(L \) is the operator with domain of definition \(D(L) \) consisting of functions \(u \in E \) such that \(\sqrt{1-x} (\partial^{k+1} u/\partial t^k \partial x) (x,t) \in L^2(\Omega), \ k = 0, 3 \) and \(u \) satisfies conditions (1.1d) and (1.1e). The operator \(L \) is considered from \(E \) to \(F \), where \(E \) is the Banach space of the functions \(u, \ u \in L^2(\Omega) \), with the finite norm
\[\| u \|_E^2 = \int_\Omega \frac{(1-x)^2}{2} \left\{ \left| \frac{\partial^3 u}{\partial t^3} \right|^2 + \left| \frac{\partial^2 u}{\partial x^2} \right|^2 \right\} \, dx \, dt \]
\[+ \int_\Omega \left(\frac{(1-x)^2}{2} \left| \frac{\partial u}{\partial x} \right|^2 + |u|^2 \right) \, dx \, dt, \] (2.1)
and F is the Hilbert space of the functions $\mathcal{F} = (f, 0, 0, 0)$, $f \in L^2(\Omega)$, with the finite norm

$$\|\mathcal{F}\|_F^2 = \int_{\Omega} (1 - x)^2 |f|^2 dx dt.$$ \hspace{1cm} (2.2)

Then we establish an energy inequality

$$\|u\|_E \leq k\|Lu\|_F, \quad \forall u \in D(L),$$ \hspace{1cm} (2.3)

and we show that the operator L has the closure \overline{L}.

Definition 2.1. A solution of the operator equation $\overline{L}u = \mathcal{F}$ is called a strong solution of problem (1.1).

Inequality (2.3) can be extended to $u \in D(\overline{L})$, that is,

$$\|u\|_E \leq k\|\overline{L}u\|_F, \quad \forall u \in D(\overline{L}).$$ \hspace{1cm} (2.4)

From this inequality, we obtain the uniqueness of a strong solution, if it exists, and the equality of the sets $R(\overline{L})$ and $\overline{R(L)}$. Thus, to prove the existence of a strong solution of problem (1.1) for any $\mathcal{F} \in F$, it remains to prove that the set $R(L)$ is dense in F.

3. An energy inequality and its applications

Theorem 3.1. For any function $u \in D(L)$, there exists the a priori estimate

$$\|u\|_E \leq k\|Lu\|_F,$$ \hspace{1cm} (3.1)

where

$$k^2 = \frac{17\exp(ct)[5 + 4(b_1)^2 / (c'_3 - 3cc_2 + 3c^2c'_1 - c^3a_1 - b_1^2)] + 1}{\min(1, a_0^2c'_3 - 3cc_2 + 3c^2c'_1 - c^3a_1 - b_1^2)},$$ \hspace{1cm} (3.2)

with the constant c satisfying

$$\sup_{(x,t) \in \Omega} \left(\frac{1}{a} \frac{\partial a}{\partial t} \right) \leq c < \inf_{(x,t) \in \Omega} \left(\frac{1}{a} \frac{\partial a}{\partial t} + 1 \right),$$

$$c'_3 - 3cc_2 + 3c^2c'_1 - c^3a_1 - (b_1)^2 > 0,$$ \hspace{1cm} (3.3)

$$c_2 - 2cc'_1 + c^2a_1 - c'_1 + ca_1 < 0.$$
Proof. Let

\[Mu = (1 - x)^2 \frac{\partial^3 u}{\partial t^3} + 2(1 - x) \int_x \frac{\partial^3 u}{\partial t^3}, \]

(3.4)

where

\[J_x u = \int_0^x u(\zeta, t) d\zeta. \]

(3.5)

We consider the quadratic form

\[\Phi(u, u) = \text{Re} \int_\Omega \exp(-ct) \bar{\mu} \mu dx dt, \]

(3.6)

with the constant \(c \) satisfying (3.3), obtained by multiplying (1.1a) by \(\exp(-ct) \bar{\mu} \), integrating over \(\Omega \), and taking the real part. Substituting the expression of \(\mu \) in (3.6), we obtain

\[
\text{Re} \int_\Omega \exp(-ct) \bar{\mu} \mu dx dt \\
= \text{Re} \int_\Omega \exp(-ct)(1 - x)^2 \left| \frac{\partial^3 u}{\partial t^3} \right|^2 dx dt \\
+ 2 \text{Re} \int_\Omega \exp(-ct)(1 - x) \frac{\partial^3 u}{\partial t^3} J_x \frac{\partial^3 u}{\partial t^3} dx dt \\
+ \text{Re} \int_\Omega \exp(-ct) \frac{\partial}{\partial x} \left(a(x, t) \frac{\partial u}{\partial x} \right) \bar{\mu} \mu dx dt.
\]

(3.7)

Integrating the last two terms on the right-hand side by parts with respect to \(x \) in (3.7) and using the Dirichlet condition (1.1d), we obtain

\[
2 \text{Re} \int_0^1 (1 - x) \exp(-ct) \frac{\partial^3 u}{\partial t^3} J_x \frac{\partial^3 \bar{u}}{\partial t^3} dx = \int_0^1 \exp(-ct) \left| J_x \frac{\partial^3 u}{\partial t^3} \right|^2 dx,
\]

(3.8)

\[
\text{Re} \int_\Omega \exp(-ct) \frac{\partial}{\partial x} \left(a \frac{\partial u}{\partial x} \right) \bar{\mu} \mu dx dt \\
= -\text{Re} \int_\Omega \exp(-ct)(1 - x)^2 a \frac{\partial u}{\partial x} \frac{\partial^4 \bar{u}}{\partial t^3 \partial x} dx dt \\
- 2 \text{Re} \int_\Omega \exp(-ct) \frac{\partial a}{\partial x} u J_x \frac{\partial^3 \bar{u}}{\partial t^3} dx dt \\
- 2 \text{Re} \int_\Omega \exp(-ct) au \frac{\partial^3 \bar{u}}{\partial t^3} dx dt.
\]

(3.9)
Integrating each term by parts in (3.9) with respect to \(t \) and using the initial and final conditions (1.1b) and (1.1c), we get

\[
\text{Re} \int_\Omega \exp(-ct) \frac{\partial}{\partial x} \left(a \frac{\partial u}{\partial x} \right) \bar{M} u \, dx \, dt
\]

\[
= -2 \text{Re} \int_\Omega \exp(-ct) \frac{\partial a}{\partial x} u \bar{J} \frac{\partial^3 \bar{u}}{\partial t^3} \, dx \, dt
\]

\[
+ \int_\Omega \exp(-ct) \left(\frac{\partial^3 a}{\partial t^3} - 3 \frac{\partial^2 a}{\partial t^2} + 3c^2 \frac{\partial a}{\partial t} - c^3 a \right)
\]

\[
\times \left[\frac{(1-x)^2}{2} \left| \frac{\partial u}{\partial x} \right|^2 + |u|^2 \right] \, dx \, dt
\]

\[-3 \int_\Omega \exp(-ct) \left(\frac{\partial a}{\partial t} - ca \right) \left[\frac{(1-x)^2}{2} \left| \frac{\partial^2 u}{\partial t \partial x} \right|^2 + \left| \frac{\partial u}{\partial t} \right|^2 \right] \, dx \, dt
\]

\[
+ \int_0^1 \exp(-ct) a \left[\frac{(1-x)^2}{2} \left| \frac{\partial^2 u}{\partial t \partial x} \right|^2 + \left| \frac{\partial u}{\partial t} \right|^2 \right] \left| \frac{\partial u}{\partial x} \right| \bigg|_{T=t} \, dx
\]

\[-\int_0^1 \exp(-ct) \left(\frac{\partial^2 a}{\partial t^2} - 2c \frac{\partial a}{\partial t} + c^2 a \right) \left[\frac{(1-x)^2}{2} \left| \frac{\partial u}{\partial x} \right|^2 + |u|^2 \right] \bigg|_{t=T} \, dx
\]

\[
+ \text{Re} \int_0^1 \exp(-ct) \left(\frac{\partial a}{\partial t} - ca \right) \left\{ (1-x)^2 \frac{\partial^2 \bar{u}}{\partial t \partial x} \frac{\partial u}{\partial x} + 2u \frac{\partial \bar{u}}{\partial t} \right\} \bigg|_{T=t} \, dx.
\]

(3.10)

Substituting (3.8) and (3.10) in (3.7) and using conditions (1.2), (1.3), and (3.3), we obtain

\[
\int_\Omega \exp(-ct) (1-x)^2 \left| \frac{\partial^3 u}{\partial t^3} \right|^2 \, dx \, dt
\]

\[
+ \int_\Omega \exp(-ct) \left\{ c'_3 - 3cc_2 + 3c^2 c'_1 - c^3 a_1 - b_1^2 \right\}
\]

\[
\times \left[\frac{(1-x)^2}{2} \left| \frac{\partial u}{\partial x} \right|^2 + |u|^2 \right] \, dx \, dt
\]

\[
\leq \text{Re} \int_\Omega \exp(-ct) \xi u \bar{M} \bar{u} \, dx \, dt.
\]

(3.11)

Again, substituting the expression of \(Mu \) in (3.11) and using elementary inequality, we get
Boundary value problem with integral conditions

\[
\int_\Omega \exp(-ct) \left(\frac{(1-x)^2}{2} \left| \frac{\partial^3 u}{\partial t^3} \right|^2 \right) dx dt \\
+ \int_\Omega \exp(-ct) \left\{ c_3' - 3cc_2 + 3c^2 c_1' - c^3 a_1 - b_1^2 \right\} \\
\times \left[\frac{(1-x)^2}{2} \left| \frac{\partial u}{\partial x} \right|^2 + |u|^2 \right] dx dt \\
\leq 17 \int_\Omega \exp(-ct)(1-x)^2 |f|^2 dx dt.
\]

(3.12)

By virtue of (1.1a), we have

\[
\int_\Omega a_0 \left| \frac{\partial^2 u}{\partial x^2} \right|^2 \left(\frac{(1-x)^2}{2} \right) dx dt \\
\leq \int_\Omega (1-x)^2 |f|^2 dx dt + \int_\Omega 2(1-x)^2 \left| \frac{\partial^3 u}{\partial t^3} \right|^2 dx dt \\
+ 4 \int_\Omega b_1^2 \left\{ \frac{(1-x)^2}{2} \left| \frac{\partial u}{\partial x} \right|^2 + |u|^2 \right\} dx dt.
\]

(3.13)

This last inequality combined with (3.12) yields

\[
\int_\Omega \frac{(1-x)^2}{2} \left| \frac{\partial^3 u}{\partial t^3} \right|^2 dx dt \\
+ \int_\Omega \left(c_3' - 3cc_2 + 3c^2 c_1' - c^3 a_1 - b_1^2 \right) \left\{ \frac{(1-x)^2}{2} \left| \frac{\partial u}{\partial x} \right|^2 + |u|^2 \right\} dx dt \\
+ \int_\Omega a_0^2 \frac{(1-x)^2}{2} \left| \frac{\partial^2 u}{\partial x^2} \right|^2 dx dt \\
\leq \left\{ 17 \exp(cT) \left[5 + \frac{4b_1^2}{c_3' - 3cc_2 + 3c^2 c_1' - c^3 a_1 - b_1^2} \right] + 1 \right\} \\
\times \int_\Omega (1-x)^2 |f|^2 dx dt.
\]

(3.14)

Thus, this inequality implies

\[
\int_\Omega \frac{(1-x)^2}{2} \left\{ \left| \frac{\partial^3 u}{\partial t^3} \right|^2 + \left| \frac{\partial^2 u}{\partial x^2} \right|^2 \right\} dx dt \\
+ \int_\Omega \frac{(1-x)^2}{2} \left| \frac{\partial u}{\partial x} \right|^2 + |u|^2 dx dt \\
\leq k^2 \int_\Omega (1-x)^2 |f|^2 dx dt,
\]

(3.15)
where
\[
k^2 = \frac{17 \exp(cT) \left[5 + 4b_1^2 / \left(c_3 - 3cc_2 + 3c^2 c'_1 - c^3 a_1 - b_1^2 \right) \right] + 1}{\min \left(1, a_0^2, c_3 - 3cc_2 + 3c^2 c'_1 - c^3 a_1 - b_1^2 \right)}.
\] (3.16)

Then,
\[
\|u\|_E \leq k \|Lu\|_F, \quad \forall u \in D(L).
\] (3.17)

Thus, we obtain the desired inequality. \qed

Lemma 3.2. The operator \(L \) from \(E \) to \(F \) admits a closure.

Proof. Suppose that \((u_n) \in D(L) \) is a sequence such that
\[
u_n \to 0 \quad \text{in} \quad E, \quad Lu_n \to \varnothing \quad \text{in} \quad F.
\] (3.18)

We need to show that \(\varnothing = 0 \). We introduce the operator
\[
\mathcal{L}_0 v = -(1-x)^2 \frac{\partial^3 v}{\partial t^3} + \frac{\partial}{\partial x} \left\{ a(x,t) \frac{\partial}{\partial x} \left[(1-x)^2 v \right] \right\},
\] (3.19)

with domain \(D(\mathcal{L}_0) \) consisting of functions \(v \in W^{2,3}_2(\Omega) \) satisfying
\[
v|_{t=0} = 0, \quad \frac{\partial v}{\partial t} \bigg|_{t=0} = 0, \quad \frac{\partial^2 v}{\partial t^2} \bigg|_{t=0} = 0, \quad v|_{x=0} = 0, \quad \frac{\partial v}{\partial x} \bigg|_{x=0} = 0.
\] (3.20)

We note that \(D(\mathcal{L}_0) \) is dense in the Hilbert space obtained by completing \(L^2(\Omega) \) with respect to the norm
\[
\int_\Omega (1-x)^2 |v|^2 \, dx \, dt = \|v\|^2.
\] (3.21)

Since
\[
\int_\Omega (1-x)^2 f\overline{v} \, dx \, dt = \lim_{n \to +\infty} \int_\Omega (1-x)^2 \mathcal{L} u_n \overline{v} \, dx \, dt
\]
\[
= \lim_{n \to +\infty} \int_\Omega u_n \mathcal{L}_0 \overline{v} \, dx \, dt = 0,
\] (3.22)

for any function \(v \in D(\mathcal{L}_0) \), it follows that \(f = 0 \). \qed
Theorem 3.1 is valid for a strong solution, then we have the inequality
\[\|u\|_E \leq k \|Lu\|_F, \quad \forall u \in D(L). \] (3.23)

Hence we obtain the following corollary.

Corollary 3.3. A strong solution of problem (1.1) is unique if it exists, and depends continuously on \(F \).

Corollary 3.4. The range \(R(L) \) of the operator \(L \) is closed in \(F \), and \(R(L) = \overline{R(L)} \).

4. Solvability of problem (1.1)

To prove the solvability of problem (1.1), it is sufficient to show that \(R(L) \) is dense in \(F \). The proof is based on the following lemma.

Lemma 4.1. Suppose that \(a(x,t) \) and its derivatives \(\partial^4 a / \partial t^3 \partial x \) and \(\partial^2 a / \partial t \partial x \) are bounded. Let \(D_0(L) = \{ u \in D(L) : u(x,0) = 0, (\partial u / \partial t)(x,0) = 0, (\partial^2 u / \partial t^2)(x,T) = 0 \} \). If, for \(u \in D_0(L) \) and for some functions \(w \in L^2(\Omega) \),
\[
\int_{\Omega} (1-x)Lu \tilde{w} \, dx \, dt = 0, \tag{4.1}
\]
then \(w = 0 \).

Proof. Equality (4.1) can be written as follows:
\[
\int_{\Omega} (1-x)\tilde{w} \frac{\partial^3 u}{\partial t^3} \, dx \, dt = - \int_{\Omega} \frac{\partial}{\partial \xi} \left(a(1-x) \frac{\partial u}{\partial x} \right) \left\{ \tilde{w} - \int_0^x \tilde{w} \frac{\xi}{1-\xi} \, d\xi \right\} \, dx \, dt. \tag{4.2}
\]

For a given \(\omega(x,t) \), we introduce the function \(\nu(x,t) \) such that
\[
\nu(x,t) = \omega(x,t) - \int_0^x \frac{\omega(\xi,t)}{1-\xi} \, d\xi. \tag{4.3}
\]

From (4.3), we conclude that \(\int_0^1 \nu(x,t) \, dx = 0 \), and thus, we have
\[
\int_{\Omega} \frac{\partial^3 u}{\partial t^3} N\nu \, dx \, dt = - \int_{\Omega} A(t)u\tilde{\nu} \, dx \, dt, \tag{4.4}
\]
where \(A(t)u = (\partial / \partial x)(a(1-x)(\partial u / \partial x)) \) and \(N\nu = (1-x)\nu + J\nu. \)
Following [23], we introduce the smoothing operators

\[
J_{\epsilon}^{-1} = \left(I - \epsilon \left(\frac{\partial^3}{\partial t^3} \right) \right)^{-1}, \quad (J_{\epsilon}^{-1})^* = \left(I + \epsilon \left(\frac{\partial^3}{\partial t^3} \right) \right)^{-1},
\]

with respect to \(t \), which provide the solutions of the respective problems

\[
g_{\epsilon} - \epsilon \frac{\partial^3 g_{\epsilon}}{\partial t^3} = g, \quad g_{\epsilon}(0) = 0, \quad \frac{\partial g_{\epsilon}}{\partial t} (0) = 0, \quad \frac{\partial^2 g_{\epsilon}}{\partial t^2} (T) = 0,
\]

\[
g_{\epsilon}^* + \epsilon \frac{\partial^3 g_{\epsilon}^*}{\partial t^3} = g, \quad g_{\epsilon}^*(0) = 0, \quad \frac{\partial g_{\epsilon}^*}{\partial t} (T) = 0, \quad \frac{\partial^2 g_{\epsilon}^*}{\partial t^2} (T) = 0.
\]

We also have the following properties: for any \(g \in L^2(0,T) \), the functions \(J_{\epsilon}^{-1}(g) \), \((J_{\epsilon}^{-1})^* g \in W^3_2(0,T) \). If \(g \in D(L) \), then \(J_{\epsilon}^{-1}(g) \in D(L) \) and we have

\[
\lim \| (J_{\epsilon}^{-1})^* g - g \|_{L^2[0,T]} = 0 \quad \text{for} \ \epsilon \to 0,
\]

\[
\lim \| (J_{\epsilon}^{-1}) g - g \|_{L^2[0,T]} = 0 \quad \text{for} \ \epsilon \to 0.
\]

Substituting the function \(u \) in (4.4) by the smoothing function \(u_{\epsilon} \) and using the relation

\[
A(t)u_{\epsilon} = J_{\epsilon}^{-1} Au - \epsilon J_{\epsilon}^{-1} \beta_{\epsilon}(t)u_{\epsilon},
\]

where

\[
\beta_{\epsilon}(t)u_{\epsilon} = 3 \left(\frac{\partial^2 A(t)}{\partial t^2} \right) \frac{\partial u_{\epsilon}}{\partial t} + 3 \left(\frac{\partial A(t)}{\partial t} \right) \frac{\partial^2 u_{\epsilon}}{\partial t^2} + \frac{\partial^3 A(t)}{\partial t^3} \frac{\partial^3 u_{\epsilon}}{\partial t^3}
\]

we obtain

\[
- \int_{\Omega} u N \frac{\partial^3 \bar{u}_{\epsilon}^*}{\partial t^3} \ dx \ dt = \int_{\Omega} A(t)u\bar{v}_{\epsilon}^* \ dx \ dt - \epsilon \int_{\Omega} \beta_{\epsilon}(t)u_{\epsilon}\bar{v}_{\epsilon}^* \ dx \ dt.
\]

Passing to the limit, the equality in the relation (4.10) remains true for all functions \(u \in L^2(\Omega) \) such that \((1-x)(\partial u/\partial x), (\partial/\partial x)((1-x)(\partial u/\partial x)) \in L^2(\Omega), \) and satisfying condition (1.1d).
The operator $A(t)$ has a continuous inverse in $L^2(0,1)$ defined by

$$
A^{-1}(t)g = -\int_{0}^{x} \frac{1}{1-\zeta} \frac{1}{a(\zeta,t)} \int_{0}^{\zeta} g(\eta,t) d\eta d\zeta + C(t) \int_{0}^{x} \frac{1}{1-\zeta} \frac{1}{a(\zeta,t)} d\zeta,
$$

where

$$
C(t) = \frac{\int_{0}^{1} (d\zeta/a(\zeta,t)) \int_{0}^{\zeta} g(\eta,t) d\eta}{\int_{0}^{1} (d\zeta/a(\zeta,t))}.
$$

Then, we have $\int_{0}^{1} A^{-1}(t)g dx = 0$, hence the function $u_\varepsilon = (J_\varepsilon)^{-1}u$ can be represented in the form

$$
u_\varepsilon = (J_\varepsilon)^{-1} A^{-1}(t) A(t) u.
$$

Then

$$
B_\varepsilon(t)g = \frac{\partial^4 a}{\partial t^3 \partial x} J_\varepsilon^{-1} \left[\frac{1}{a(x,t)} \left(\int_{0}^{x} g(\eta,t) d\eta - C(t) \right) \right]
+ \frac{\partial^3 a}{\partial t^3} J_\varepsilon^{-1} \left[\frac{g}{a} - \frac{a_x}{a^2(x,t)} \left(\int_{0}^{x} g(\eta,t) d\eta - C(t) \right) \right]
+ \frac{3}{\partial t} \frac{\partial^2 a}{\partial t^2 \partial x} \frac{\partial}{\partial t} J_\varepsilon^{-1} \left[\frac{1}{a(x,t)} \left(\int_{0}^{x} g(\eta,t) d\eta - C(t) \right) \right]
+ \frac{\partial a_x}{\partial t} J_\varepsilon^{-1} \left[\frac{g}{a} - \frac{a_x}{a^2(x,t)} \left(\int_{0}^{x} g(\eta,t) d\eta - C(t) \right) \right],
$$

The adjoint of $B_\varepsilon(t)$ has the form

$$
B_\varepsilon^*(t) = \frac{1}{a} (J_\varepsilon^{-1})^* \left[\frac{\partial^3 a}{\partial t^2 \partial x} \right] + \frac{3}{a} (J_\varepsilon^{-1})^* \frac{\partial}{\partial t} \left(\frac{\partial a \partial h}{\partial t} \right)
+ (G_\varepsilon h)(x) - \frac{1}{1/a(x,t)} \frac{1}{1/a(\eta,t)} dx \int_{0}^{1} (1/a(\eta,t)) d\eta (G_\varepsilon h)(1).
$$
\[(G_\varepsilon h)(x) = \int_{0}^{x} \left(-\frac{3}{a(\zeta,t)} (J_\varepsilon^{-1})^* \cdot \frac{\partial}{\partial t} \left(\frac{\partial^2}{\partial \zeta \partial t} \frac{\partial h}{\partial t} \right) \\
+ \frac{3}{a(\zeta,t)} \frac{1}{a^2(\zeta,t)} (J_\varepsilon^{-1})^* \cdot \frac{\partial}{\partial t} \left(\frac{\partial a \partial h}{\partial \zeta \partial t} \right) \\
- \frac{1}{a(\zeta,t)} (J_\varepsilon^{-1})^* \left(\frac{\partial^4 a}{\partial t^3 \partial \zeta} \right) + \frac{\partial a}{\partial \zeta} \frac{1}{a^2(\zeta,t)} (J_\varepsilon^{-1})^* \left(\frac{\partial^3 a}{\partial t^3 \partial \zeta} \right) \right) d\zeta, \]

(4.16)

Consequently, equality (4.10) becomes

\[-\int_{\Omega} u N \frac{\partial^3 v_\varepsilon^*}{\partial t^3} d\tau dt = \int_{\Omega} A(t) u h_\varepsilon dx dt, \]

(4.17)

where \(h_\varepsilon = v_\varepsilon^* - \varepsilon B_\varepsilon^* v_\varepsilon^* \).

The left-hand side of (4.17) is a continuous linear functional of \(u \). Hence the function \(h_\varepsilon \) has the derivatives \((1-x)(\partial h_\varepsilon/\partial x), (\partial/\partial x)((1-x)(\partial h_\varepsilon/\partial x)) \in L^2(\Omega)\) and the following conditions are satisfied: \(h_\varepsilon|_{x=0} = 0, h_\varepsilon|_{x=1} = 0, \) and \((1-x)(\partial h_\varepsilon/\partial x)|_{x=1} = 0.\)

From the equality

\[(1-x) \frac{\partial h_\varepsilon}{\partial x} = \left[I - \varepsilon \frac{1}{a} (J_\varepsilon^{-1})^* (\partial^3 a/\partial t^3) \right] (1-x) \frac{\partial v_\varepsilon^*}{\partial x} \\
- 3\varepsilon \frac{1}{a} (J_\varepsilon^{-1})^* \frac{\partial}{\partial t} \left(\frac{\partial a}{\partial t} \frac{\partial}{\partial t} (1-x) \frac{\partial v_\varepsilon^*}{\partial x} \right), \]

(4.18)

and since the operator \((J_\varepsilon^{-1})^*\) is bounded in \(L^2(\Omega) \), for sufficiently small \(\varepsilon \), we have \(\| \varepsilon (1/a)(J_\varepsilon^{-1})^* (\partial^3 a/\partial t^3) \| < 1 \). Hence the operator \(I - \varepsilon (1/a)(J_\varepsilon^{-1})^* (\partial^3 a/\partial t^3) \) has a bounded inverse in \(L^2(\Omega) \). We conclude that \((1-x)(\partial v_\varepsilon^*/\partial x) \in L^2(\Omega)\).

Similarly, we conclude that \((\partial/\partial x)((1-x)(\partial v_\varepsilon^*/\partial x)) \) exists and belongs to \(L^2(\Omega) \), and the following conditions are satisfied:

\[v_\varepsilon^*|_{x=0} = 0, \quad v_\varepsilon^*|_{x=1} = 0, \quad (1-x) \frac{\partial v_\varepsilon^*}{\partial x}|_{x=1} = 0. \]

(4.19)

Substituting \(u = \int_{0}^{t} \int_{\eta}^{\tau} \exp(\varepsilon \tau) v_\varepsilon^*(\tau) d\tau d\zeta d\eta \) in (4.4), where the constant \(c \) satisfies (3.3), we obtain

\[\int_{\Omega} \exp(\varepsilon \tau) v_\varepsilon^* N \bar{v} dx dt = -\int_{\Omega} A(t) u \bar{v} dx dt. \]

(4.20)
Using the properties of smoothing operators, we have

\[
\int_{\Omega} \exp(ct)v_\epsilon^* N \bar{\sigma} \, dx \, dt = - \int_{\Omega} A(t)u \overline{v_\epsilon^*} \, dx \, dt - \varepsilon \int_{\Omega} A(t)u \frac{\partial^3 v_\epsilon^*}{\partial t^3} \, dx \, dt,
\]

(4.21)

and from

\[
\varepsilon \text{Re} \int_{\Omega} A(t)u \frac{\partial^3 v_\epsilon^*}{\partial t^3} \, dx \, dt = \varepsilon \int_{\Omega} (1-x)a \frac{\partial u}{\partial x} \frac{\partial}{\partial t} \frac{\partial^3 v_\epsilon^*}{\partial x \partial t^2} \, dx \, dt
\]

\[
= - \varepsilon \text{Re} \int_{\Omega} (1-x) \frac{\partial a}{\partial t} \frac{\partial u}{\partial x} \frac{\partial}{\partial t} \frac{\partial^3 v_\epsilon^*}{\partial x \partial t^2} \, dx \, dt
\]

\[
+ \varepsilon \int_{\Omega} (1-x) \frac{\partial a}{\partial t} \frac{\partial^2 u}{\partial t \partial x} \frac{\partial}{\partial t} \frac{\partial^2 v_\epsilon^*}{\partial x \partial t} \, dx \, dt
\]

\[
+ \varepsilon \int_{\Omega} a \exp(-ct)(1-x) \left| \frac{\partial v_\epsilon^*}{\partial x} \right|^2 \, dx \, dt
\]

\[
+ \varepsilon \text{Re} \int_{\Omega} (1-x) \frac{\partial a}{\partial t} \frac{\partial^2 u}{\partial t \partial x} \frac{\partial^2 v_\epsilon^*}{\partial x^2} \, dx \, dt,
\]

(4.22)

we have

\[
\varepsilon \text{Re} \int_{\Omega} A(t)u \frac{\partial^3 v_\epsilon^*}{\partial t^3} \, dx \, dt
\]

\[
\geq \varepsilon \int_{\Omega} a \exp(+ct)(1-x) \left| \frac{\partial v_\epsilon^*}{\partial x} \right|^2 \, dx \, dt
\]

\[
- \varepsilon \int_{\Omega} (1-x) \frac{1}{4a} \left(\frac{\partial a}{\partial t} \right)^2 \exp(-ct) \left| \frac{\partial^3 u}{\partial t^2 \partial x} \right|^2 \, dx \, dt
\]

\[
- \varepsilon \int_{\Omega} a \exp(+ct)(1-x) \left| \frac{\partial v_\epsilon^*}{\partial x} \right|^2 \, dx \, dt
\]

\[
- \varepsilon \int_{\Omega} \frac{1-x}{2} \left(\frac{\partial a}{\partial t} \right)^2 \exp(-ct) \left| \frac{\partial u}{\partial x} \right|^2 \, dx \, dt
\]

\[
- \varepsilon \int_{\Omega} \exp(+ct) \frac{1-x}{2} \left| \frac{\partial^3 v_\epsilon^*}{\partial t \partial x^2} \right|^2 \, dx \, dt
\]

\[
- \varepsilon \int_{\Omega} \exp(+ct) \frac{1-x}{2} \left| \frac{\partial v_\epsilon^*}{\partial t \partial x} \right|^2 \, dx \, dt
\]

\[
- \varepsilon \int_{\Omega} \frac{1-x}{2} \left(\frac{\partial a}{\partial t} \right)^2 \exp(-ct) \left| \frac{\partial^2 u}{\partial x \partial t} \right|^2 \, dx \, dt.
\]

(4.23)
Integrating the first term on the right-hand side by parts in (4.21), we obtain

\[\text{Re} \int_\Omega A(t) u \overline{v_t} dx \, dt \]

\[\geq - \frac{3}{2} \int_\Omega (1-x) \exp(-ct) \left(\frac{\partial a}{\partial t} - ca \right) \left| \frac{\partial^2 u}{\partial t \partial x} \right|^2 dx \, dt \]

\[+ \frac{1}{2} \int_0^1 (1-x) \exp(-ct) \left(a - \left| \frac{\partial a}{\partial t} - ca \right| \right) \left| \frac{\partial^2 u}{\partial t \partial x} \right|^2 dx \bigg|_{t=T} \]

\[- \frac{1}{2} \int_0^1 (1-x) \exp(-ct) \left\{ \frac{\partial^2 a}{\partial t^2} - 2c \frac{\partial a}{\partial t} + c^2 a + \left| \frac{\partial a}{\partial t} - ca \right| \right\} \left| \frac{\partial u}{\partial x} \right|^2 dx \bigg|_{t=T} \]

\[+ \frac{1}{2} \int_\Omega (1-x) \exp(-ct) \left\{ \frac{\partial^3 a}{\partial t^3} - 3c \frac{\partial^2 a}{\partial t^2} + 3c^2 \frac{\partial a}{\partial t} - c^3 a \right\} \left| \frac{\partial u}{\partial x} \right|^2 dx \, dt. \]

(4.24)

Combining (4.23) and (4.24), we get

\[\text{Re} \int_\Omega \exp(ct) v_t^* N \overline{v} dx \, dt \]

\[\leq \frac{3}{2} \int_\Omega (1-x) \exp(-ct) \left(c_1 - ca_0 \right) \left| \frac{\partial^2 u}{\partial t \partial x} \right|^2 dx \, dt \]

\[- \frac{1}{2} \int_0^1 (1-x) \exp(-ct) \left(a_0 - c'_1 - ca_1 \right) \left| \frac{\partial^2 u}{\partial t \partial x} \right|^2 dx \bigg|_{t=T} \]

\[+ \frac{1}{2} \int_0^1 (1-x) \exp(-ct) \left(c_2 - 2c'_1 c - c^2 a_1 - c'_1 + ca_1 \right) \left| \frac{\partial u}{\partial x} \right|^2 dx \bigg|_{t=T} \]

\[- \frac{1}{2} \int_\Omega (1-x) \exp(-ct) \left(c'_2 - 3c_2 c + 3c^2 c'_1 - c^3 a_1 \right) \left| \frac{\partial u}{\partial x} \right|^2 dx \, dt \]

\[+ \epsilon \left(\int_\Omega (1-x) \exp(-ct) \frac{c_1^2}{4a_0} \left| \frac{\partial^3 u}{\partial t^2 \partial x} \right|^2 dx \, dt \right) \]

\[+ \int_\Omega (1-x) \exp(-ct) \frac{c_1^2}{2} \left| \frac{\partial u}{\partial x} \right|^2 dx \, dt \]

\[+ \int_\Omega \frac{1-x}{2} \exp(ct) \left| \frac{\partial^3 v_t^*}{\partial t^2 \partial x} \right|^2 dx \, dt \]

\[+ \int_\Omega (1-x) \exp(-ct) \frac{c_1^2}{2} \left| \frac{\partial^2 u}{\partial t \partial x} \right|^2 dx \, dt \]

\[+ \int_\Omega \frac{1-x}{2} \exp(ct) \left| \frac{\partial^2 v_t^*}{\partial t \partial x} \right|^2 dx \, dt \].

(4.25)
Boundary value problem with integral conditions

Using conditions (3.3) and inequalities (4.23) and (4.24), we obtain

$$\text{Re} \int_\Omega \exp(\epsilon t)vN\overline{v} \, dx \, dt \leq 0, \quad \text{as } \epsilon \to 0.$$ \hspace{1cm} (4.26)

Since $\text{Re} \int_\Omega \exp(\epsilon t)v J_x \overline{v} \, dx \, dt = 0$, then $v = 0$ a.e.

Finally, from the equality $(1 - x)v + J_x v = (1 - x)w$, we conclude $w = 0$. □

Theorem 4.2. The range $R(\overline{L})$ of \overline{L} coincides with F.

Proof. Since F is Hilbert space, then $R(\overline{L}) = F$ if and only if the relation

$$\int_\Omega (1 - x)^2 \Delta u \overline{f} \, dx \, dt = 0,$$ \hspace{1cm} (4.27)

for arbitrary $u \in D_0(L)$ and $\overline{f} \in F$, implies that $f = 0$.

Taking $u \in D_0(L)$ in (4.27) and using Lemma 4.1, we obtain that $w = (1 - x)f = 0$, then $f = 0$. □

References

M. Denche: Laboratoire Equations Différentielles, Département de Mathématiques, Faculté des Sciences, Université Mentouri, 25000 Constantine, Algeria

E-mail address: denech@wissal.dz

A. Memou: Laboratoire Equations Différentielles, Département de Mathématiques, Faculté des Sciences, Université Mentouri, 25000 Constantine, Algeria
Call for Papers

The study of dynamic equations on a time scale goes back to its founder Stefan Hilger (1988), and is a new area of still fairly theoretical exploration in mathematics. Motivating the subject is the notion that dynamic equations on time scales can build bridges between continuous and discrete mathematics; moreover, it often reveals the reasons for the discrepancies between two theories.

In recent years, the study of dynamic equations has led to several important applications, for example, in the study of insect population models, neural network, heat transfer, and epidemic models. This special issue will contain new researches and survey articles on Boundary Value Problems on Time Scales. In particular, it will focus on the following topics:

- Existence, uniqueness, and multiplicity of solutions
- Comparison principles
- Variational methods
- Mathematical models
- Biological and medical applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal's Author Guidelines, which are located at http://www.hindawi.com/journals/ade/guidelines.html. Authors should follow the Advances in Difference Equations manuscript format described at the journal site http://www.hindawi.com/journals/ade/. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of €200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>April 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>July 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>October 1, 2009</td>
</tr>
</tbody>
</table>