We prove the existence and uniqueness of a strong solution for a linear third-order equation with integral boundary conditions. The proof uses energy inequalities and the density of the range of the generated operator.

1. Introduction

In the rectangle $\Omega = [0,1] \times [0,T]$, we consider the equation

$$
\mathcal{L}u = \frac{\partial^3 u}{\partial t^3} + \frac{\partial}{\partial x} \left(a(x,t) \frac{\partial u}{\partial x} \right) = f(x,t),
$$

with the initial conditions

$$
u(x,0) = 0, \quad \frac{\partial u}{\partial t}(x,0) = 0, \quad x \in (0,1),
$$

the final condition

$$
\frac{\partial^2 u}{\partial t^2}(x,T) = 0, \quad x \in (0,1),
$$

the Dirichlet condition

$$
u(0,t) = 0, \quad \forall t \in (0,T),
$$
Boundary value problem with integral conditions

and the integral condition

\[\int_0^1 u(x,t) \, dx = 0, \quad \forall t \in (0,T). \quad (1.1e) \]

In addition, we assume that the function \(a(x,t) \) is bounded with

\[0 < a_0 \leq a(x,t) \leq a_1, \quad (1.2) \]

and has bounded partial derivatives such that

\[c'_k \leq \frac{\partial^k a}{\partial t^k}(x,t) \leq c_k, \quad \forall x \in (0,1), \ t \in (0,T), \ k = 1, 3, \text{ with } c'_1 \geq 0, \quad (1.3) \]

\[\left| \frac{\partial a}{\partial x}(x,t) \right| \leq b_1, \quad \text{for } (x,t) \in \Omega. \]

Various problems arising in heat conduction \([4, 6, 14, 15]\), chemical engineering \([9]\), underground water flow \([13]\), thermoelasticity \([21]\), and plasmaphysics \([19]\) can be reduced to the nonlocal problems with integral boundary conditions. This type of boundary value problems has been investigated in \([1, 2, 3, 5, 6, 7, 9, 14, 15, 16, 20, 23]\) for parabolic equations, in \([18, 22]\) for hyperbolic equations, and in \([10, 11, 12]\) for mixed-type equations. The basic tool in \([4, 10, 11, 12, 16, 23]\) is the energy inequality method which, of course, requires appropriate multipliers and functional spaces. In this paper, we extend this method to the study of a linear third-order partial differential equation. This type of problems is encountered in the study of thermal conductivity \([17]\) and microscale heat transfer \([8]\).

2. Preliminaries

In this paper, we prove the existence and uniqueness of a strong solution of problem (1.1). For this, we consider the solution of problem (1.1) as a solution of the operator equation \(Lu = \mathcal{F} \), where \(L \) is the operator with domain of definition \(D(L) \) consisting of functions \(u \in E \) such that \(\sqrt{1-x} (\partial^{k+1} u / \partial t^k \partial x)(x,t) \in L^2(\Omega) \), \(k = 0, 3 \) and \(u \) satisfies conditions (1.1d) and (1.1e). The operator \(L \) is considered from \(E \) to \(F \), where \(E \) is the Banach space of the functions \(u, u \in L^2(\Omega) \), with the finite norm

\[\| u \|_E^2 = \int_\Omega \frac{(1-x)^2}{2} \left\{ \left| \frac{\partial^3 u}{\partial t^3} \right|^2 + \left| \frac{\partial^2 u}{\partial x^2} \right|^2 \right\} \, dx \, dt + \int_\Omega \left(\frac{(1-x)^2}{2} \left| \frac{\partial u}{\partial x} \right|^2 + |u|^2 \right) \, dx \, dt, \quad (2.1) \]
and F is the Hilbert space of the functions $\mathcal{F} = (f,0,0,0)$, $f \in L^2(\Omega)$, with the finite norm

$$\|\mathcal{F}\|^2_F = \int_{\Omega} (1-x)^2 |f|^2 \, dx \, dt. \tag{2.2}$$

Then we establish an energy inequality

$$\|u\|_E \leq k \|Lu\|_F, \quad \forall u \in D(L), \tag{2.3}$$

and we show that the operator L has the closure \overline{L}.

Definition 2.1. A solution of the operator equation $\overline{L}u = \mathcal{F}$ is called a strong solution of problem (1.1).

Inequality (2.3) can be extended to $u \in D(\overline{L})$, that is,

$$\|u\|_E \leq k \|\overline{L}u\|_F, \quad \forall u \in D(\overline{L}). \tag{2.4}$$

From this inequality, we obtain the uniqueness of a strong solution, if it exists, and the equality of the sets $R(\overline{L})$ and $R(L)$. Thus, to prove the existence of a strong solution of problem (1.1) for any $\mathcal{F} \in F$, it remains to prove that the set $R(L)$ is dense in F.

3. An energy inequality and its applications

Theorem 3.1. For any function $u \in D(L)$, there exists the a priori estimate

$$\|u\|_E \leq k \|Lu\|_F, \tag{3.1}$$

where

$$k^2 = \frac{17 \exp(ct) [5 + 4(b_1)^2 / (c_1 - 3cc_2 + 3c^2c_1 - c^3a_1 - b_1^2)] + 1}{\min (1, a_0^2 c_3 - 3cc_2 + 3c^2c_1 - c^3a_1 - b_1^2)}, \tag{3.2}$$

with the constant c satisfying

$$\sup_{(x,t) \in \Omega} \left(\frac{1}{a} \frac{\partial a}{\partial t} \right) \leq c < \inf_{(x,t) \in \Omega} \left(\frac{1}{a} \frac{\partial a}{\partial t} + 1 \right), \tag{3.3}\]$$

$$c_3 - 3cc_2 + 3c^2c_1 - c^3a_1 - (b_1)^2 > 0, \tag{3.3}$$

$$c_2 - 2cc_1 + c^2a_1 - c_1 + ca_1 < 0.$$
Boundary value problem with integral conditions

Proof. Let

\[Mu = (1 - x)^2 \frac{\partial^3 u}{\partial t^3} + 2(1 - x) J_x \frac{\partial^3 u}{\partial t^3}, \quad (3.4) \]

where

\[J_x u = \int_0^x u(\zeta, t) d\zeta. \quad (3.5) \]

We consider the quadratic form

\[\Phi(u, u) = \text{Re} \int_{\Omega} \exp(-ct) \mathcal{E} u Mu \, dx \, dt, \quad (3.6) \]

with the constant \(c \) satisfying (3.3), obtained by multiplying (1.1a) by \(\exp(-ct) \overline{Mu} \), integrating over \(\Omega \), and taking the real part. Substituting the expression of \(Mu \) in (3.6), we obtain

\[\text{Re} \int_{\Omega} \exp(-ct) \mathcal{E} u Mu \, dx \, dt \]
\[= \text{Re} \int_{\Omega} \exp(-ct)(1 - x)^2 \left| \frac{\partial^3 u}{\partial t^3} \right|^2 \, dx \, dt \]
\[+ 2 \text{Re} \int_{\Omega} \exp(-ct)(1 - x) \frac{\partial^3 u}{\partial t^3} J_x \frac{\partial^3 u}{\partial t^3} \, dx \, dt \]
\[+ \text{Re} \int_{\Omega} \exp(-ct) \frac{\partial}{\partial x} \left(a(x, t) \frac{\partial u}{\partial x} \right) \overline{Mu} \, dx \, dt. \quad (3.7) \]

Integrating the last two terms on the right-hand side by parts with respect to \(x \) in (3.7) and using the Dirichlet condition (1.1d), we obtain

\[2 \text{Re} \int_0^1 (1 - x) \exp(-ct) \frac{\partial^3 u}{\partial t^3} J_x \frac{\partial^3 u}{\partial t^3} \, dx = \int_0^1 \exp(-ct) \left| J_x \frac{\partial^3 u}{\partial t^3} \right|^2 \, dx, \quad (3.8) \]
\[\text{Re} \int_{\Omega} \exp(-ct) \frac{\partial}{\partial x} \left(a(x, t) \frac{\partial u}{\partial x} \right) \overline{Mu} \, dx \, dt \]
\[= -\text{Re} \int_{\Omega} \exp(-ct)(1 - x)^2 \frac{\partial u}{\partial x} \frac{\partial^4 \overline{u}}{\partial x \partial t^3} \, dx \, dt \]
\[- 2 \text{Re} \int_{\Omega} \exp(-ct) \frac{\partial a}{\partial x} u J_x \frac{\partial^3 \overline{u}}{\partial t^3} \, dx \, dt \]
\[- 2 \text{Re} \int_{\Omega} \exp(-ct) a \frac{\partial^3 \overline{u}}{\partial t^3} \, dx \, dt. \quad (3.9) \]
Integrating each term by parts in (3.9) with respect to t and using the initial and final conditions (1.1b) and (1.1c), we get

\[
\text{Re} \int_\Omega \exp(-ct) \frac{\partial}{\partial x} \left(a \frac{\partial u}{\partial x} \right) \overline{Mu} \, dx \, dt \\
= -2 \text{Re} \int_\Omega \exp(-ct) \frac{\partial a}{\partial x} u f x \frac{\partial^3 u}{\partial t^3} \, dx \, dt \\
+ \int_\Omega \exp(-ct) \left(\frac{\partial^3 a}{\partial t^3} - 3c \frac{\partial^2 a}{\partial t^2} + 3c^2 \frac{\partial a}{\partial t} - c^3 a \right) \\
\times \left[\frac{(1-x)^2}{2} \left| \frac{\partial u}{\partial x} \right|^2 + |u|^2 \right] \, dx \, dt \\
- 3 \int_\Omega \exp(-ct) \left(\frac{\partial a}{\partial t} - ca \right) \left[\frac{(1-x)^2}{2} \left| \frac{\partial^2 u}{\partial t \partial x} \right|^2 + \left| \frac{\partial u}{\partial t} \right|^2 \right] \, dx \, dt \\
+ \int_0^1 \exp(-ct) a \left[\frac{(1-x)^2}{2} \left| \frac{\partial^2 u}{\partial t \partial x} \right|^2 + \left| \frac{\partial u}{\partial t} \right|^2 \right] \, dx \bigg|_{T=t} \\
- \int_0^1 \exp(-ct) \left(\frac{\partial^2 a}{\partial t^2} - 2c \frac{\partial a}{\partial t} + c^2 a \right) \left[\frac{(1-x)^2}{2} \left| \frac{\partial u}{\partial x} \right|^2 + |u|^2 \right] \, dx \bigg|_{t=T} \\
+ \text{Re} \int_0^1 \exp(-ct) \left(\frac{\partial a}{\partial t} - ca \right) \left\{ (1-x)^2 \frac{\partial^2 u}{\partial t \partial x} \frac{\partial u}{\partial x} + 2u \frac{\partial u}{\partial t} \right\} \bigg|_{t=t} \, dx.
\]

Substituting (3.8) and (3.10) in (3.7) and using conditions (1.2), (1.3), and (3.3), we obtain

\[
\int_\Omega \exp(-ct)(1-x)^2 \left| \frac{\partial^3 u}{\partial t^3} \right|^2 \, dx \, dt \\
+ \int_\Omega \exp(-ct) \left\{ c_3^2 - 3cc_2 + 3c^2c_1 - c^3 a_1 - b_1^2 \right\} \\
\times \left[\frac{(1-x)^2}{2} \left| \frac{\partial u}{\partial x} \right|^2 + |u|^2 \right] \, dx \, dt \\
\leq \text{Re} \int_\Omega \exp(-ct) \xi u M \overline{u} \, dx \, dt.
\]

Again, substituting the expression of Mu in (3.11) and using elementary inequality, we get
Boundary value problem with integral conditions

\[
\int_{\Omega} \exp(-ct) \frac{(1-x)^2}{2} \left| \frac{\partial^3 u}{\partial t^3} \right|^2 \, dx \, dt \\
+ \int_{\Omega} \exp(-ct) \left\{ c'_3 - 3cc_2 + 3c^2c'_1 - c^3a_1 - b_1^2 \right\}^2 \times \left[\left(\frac{(1-x)^2}{2} \right| \frac{\partial u}{\partial x} \right| + |u|^2 \right] \, dx \, dt \\
\leq 17 \int_{\Omega} \exp(-ct)(1-x)^2|f|^2 \, dx \, dt.
\] (3.12)

By virtue of (1.1a), we have

\[
\int_{\Omega} \left[\frac{(1-x)^2}{2} \left| \frac{\partial^2 u}{\partial x^2} \right|^2 \right] \, dx \, dt \\
\leq \int_{\Omega} (1-x)^2|f|^2 \, dx \, dt + \int_{\Omega} 2(1-x)^2 \left| \frac{\partial^3 u}{\partial t^3} \right|^2 \, dx \, dt \\
+ 4 \int_{\Omega} b_1^2 \left\{ \frac{(1-x)^2}{2} \left| \frac{\partial u}{\partial x} \right| + |u|^2 \right\} \, dx \, dt.
\] (3.13)

This last inequality combined with (3.12) yields

\[
\int_{\Omega} \frac{(1-x)^2}{2} \left| \frac{\partial^3 u}{\partial t^3} \right|^2 \, dx \, dt \\
+ \int_{\Omega} \left\{ c'_3 - 3cc_2 + 3c^2c'_1 - c^3a_1 - b_1^2 \right\} \left\{ \frac{(1-x)^2}{2} \left| \frac{\partial u}{\partial x} \right| + |u|^2 \right\} \, dx \, dt \\
+ \int_{\Omega} a_0^2 \frac{(1-x)^2}{2} \left| \frac{\partial^2 u}{\partial x^2} \right|^2 \, dx \, dt \\
\leq \left\{ 17 \exp(cT) \left[5 + \frac{4b_1^2}{c'_3 - 3cc_2 + 3c^2c'_1 - c^3a_1 - b_1^2} + 1 \right] \right\} \\
\times \int_{\Omega} (1-x)^2|f|^2 \, dx \, dt.
\] (3.14)

Thus, this inequality implies

\[
\int_{\Omega} \frac{(1-x)^2}{2} \left\{ \left| \frac{\partial^3 u}{\partial t^3} \right|^2 + \left| \frac{\partial^2 u}{\partial x^2} \right|^2 \right\} \, dx \, dt + \int_{\Omega} \frac{(1-x)^2}{2} \left| \frac{\partial u}{\partial x} \right|^2 + |u|^2 \, dx \, dt \\
\leq k^2 \int_{\Omega} (1-x)^2|f|^2 \, dx \, dt,
\] (3.15)
where
\[
k^2 = \frac{17 \exp(cT) \left[5 + 4b_1^2 / (c_3' - 3cc_2 + 3c^2c_1' - c^3a_1 - b_1^2) \right] + 1}{\min \left(1, a_0^2, c_3' - 3cc_2 + 3c^2c_1' - c^3a_1 - b_1^2 \right)}.
\tag{3.16}
\]

Then,
\[
\|u\|_E \leq k \|Lu\|_F, \quad \forall u \in D(L).
\tag{3.17}
\]

Thus, we obtain the desired inequality.

\textbf{Lemma 3.2.} The operator \(L\) from \(E\) to \(F\) admits a closure.

\textit{Proof.} Suppose that \((u_n) \in D(L)\) is a sequence such that
\[
u_n \to 0 \quad \text{in} \quad E, \quad Lu_n \not\to 0 \quad \text{in} \quad F.
\tag{3.18}
\]

We need to show that \(\mathcal{F} = 0\). We introduce the operator
\[
\mathcal{L}_0 v = -(1-x)^2 \frac{\partial^3 v}{\partial t^3} + \frac{\partial}{\partial x} \left\{ a(x,t) \frac{\partial}{\partial x} \left[(1-x)^2 v \right] \right\},
\tag{3.19}
\]

with domain \(D(\mathcal{L}_0)\) consisting of functions \(v \in W^{2,3}_2(\Omega)\) satisfying
\[
v|_{t=0} = 0, \quad \frac{\partial v}{\partial t}|_{t=0} = 0, \quad \frac{\partial^2 v}{\partial t^2}|_{t=0} = 0, \quad v|_{x=0} = 0, \quad \frac{\partial v}{\partial x}|_{x=0} = 0.
\tag{3.20}
\]

We note that \(D(\mathcal{L}_0)\) is dense in the Hilbert space obtained by completing \(L^2(\Omega)\) with respect to the norm
\[
\int_\Omega (1-x)^2 |v|^2 dx \, dt = \|v\|^2.
\tag{3.21}
\]

Since
\[
\int_\Omega (1-x)^2 f \bar{v} \, dx \, dt = \lim_{n \to +\infty} \int_\Omega (1-x)^2 \mathcal{L}_n \bar{v} \, dx \, dt
\]
\[
= \lim_{n \to +\infty} \int_\Omega u_n \mathcal{L}_0 \bar{v} \, dx \, dt = 0,
\tag{3.22}
\]

for any function \(v \in D(\mathcal{L}_0)\), it follows that \(f = 0\).

\textbf{Lemma 3.2.} The operator \(L\) from \(E\) to \(F\) admits a closure.
Theorem 3.1 is valid for a strong solution, then we have the inequality
\[\|u\|_E \leq k\|Lu\|_F, \quad \forall u \in D(L). \quad (3.23) \]
Hence we obtain the following corollary.

Corollary 3.3. A strong solution of problem (1.1) is unique if it exists, and depends continuously on \(F \).

Corollary 3.4. The range \(R(L) \) of the operator \(L \) is closed in \(F \), and \(R(L) = R(L) \).

4. Solvability of problem (1.1)

To prove the solvability of problem (1.1), it is sufficient to show that \(R(L) \) is dense in \(F \). The proof is based on the following lemma.

Lemma 4.1. Suppose that \(a(x,t) \) and its derivatives \(\partial^4 a / \partial t^3 \partial x \) and \(\partial^2 a / \partial t \partial x \) are bounded. Let \(D_0(L) = \{ u \in D(L) : u(x,0) = 0, (\partial u / \partial t)(x,0) = 0, (\partial^2 u / \partial t^2)(x,T) = 0 \} \). If, for \(u \in D_0(L) \) and for some functions \(w \in L^2(\Omega) \),
\[\int_{\Omega} (1-x)^L u \bar{w} \, dx \, dt = 0, \quad (4.1) \]
then \(w = 0 \).

Proof. Equality (4.1) can be written as follows:
\[\int_{\Omega} (1-x)\bar{w} \frac{\partial^3 u}{\partial t^3} \, dx \, dt = -\int_{\Omega} \frac{\partial}{\partial x} \left(a(1-x) \frac{\partial u}{\partial x} \right) \left\{ \bar{w} - \int_{0}^{x} \frac{\bar{w}}{1-\xi} \, d\xi \right\} \, dx \, dt. \quad (4.2) \]
For a given \(w(x,t) \), we introduce the function \(v(x,t) \) such that
\[v(x,t) = w(x,t) - \int_{0}^{x} \frac{w(\xi,t)}{1-\xi} \, d\xi. \quad (4.3) \]
From (4.3), we conclude that \(\int_{0}^{1} v(x,t) \, dx = 0 \), and thus, we have
\[\int_{\Omega} \frac{\partial^3 u}{\partial t^3} Nv \, dx \, dt = -\int_{\Omega} A(t)u \bar{v} \, dx \, dt, \quad (4.4) \]
where \(A(t)u = (\partial / \partial x)(a(1-x)(\partial u / \partial x)) \) and \(Nv = (1-x)v + Jv \).
Following [23], we introduce the smoothing operators

\[J_\epsilon^{-1} = \left(I - \epsilon \left(\frac{\partial^3}{\partial t^3} \right) \right)^{-1}, \quad (J_\epsilon^{-1})^* = \left(I + \epsilon \left(\frac{\partial^3}{\partial t^3} \right) \right)^{-1}, \quad (4.5) \]

with respect to \(t \), which provide the solutions of the respective problems

\[
\begin{align*}
 g_\epsilon - \epsilon \frac{\partial^3 g_\epsilon}{\partial t^3} &= g, \quad g_\epsilon(0) = 0, \quad \frac{\partial g_\epsilon}{\partial t}(0) = 0, \quad \frac{\partial^2 g_\epsilon}{\partial t^2}(T) = 0, \\
 g_\epsilon^* + \epsilon \frac{\partial^3 g_\epsilon^*}{\partial t^3} &= g, \quad g_\epsilon^*(0) = 0, \quad \frac{\partial g_\epsilon^*}{\partial t}(T) = 0, \quad \frac{\partial^2 g_\epsilon^*}{\partial t^2}(T) = 0.
\end{align*}
\]

We also have the following properties: for any \(g \in L^2(0,T) \), the functions \(J_\epsilon^{-1}(g) \), \((J_\epsilon^{-1})^* g \in W^{3,2}(0,T) \). If \(g \in D(L) \), then \(J_\epsilon^{-1}(g) \in D(L) \) and we have

\[
\begin{align*}
 \lim_{\epsilon \to 0} \left\| (J_\epsilon^{-1})^* g - g \right\|_{L^2[0,T]} &= 0, \\
 \lim_{\epsilon \to 0} \left\| (J_\epsilon^{-1}) g - g \right\|_{L^2[0,T]} &= 0.
\end{align*}
\]

Substituting the function \(u \) in (4.4) by the smoothing function \(u_\epsilon \) and using the relation

\[A(t)u_\epsilon = J_\epsilon^{-1} Au - \epsilon J_\epsilon^{-1} \beta_\epsilon(t)u_\epsilon, \quad (4.8) \]

where

\[
\beta_\epsilon(t)u_\epsilon = 3 \frac{\partial^2 A(t)}{\partial t^2} \frac{\partial u_\epsilon}{\partial t} + 3 \frac{\partial A(t)}{\partial t} \frac{\partial^2 u_\epsilon}{\partial t^2} + \frac{\partial^3 A(t)}{\partial t^3} u_\epsilon,
\]

we obtain

\[
- \int_\Omega u N \frac{\partial^3 \overline{\nabla}_\epsilon^*}{\partial^3 t} dx dt = \int_\Omega A(t)uv_\epsilon^* dx dt - \epsilon \int_\Omega \beta_\epsilon(t)u_\epsilon \overline{v_\epsilon}^* dx dt. \quad (4.10)
\]

Passing to the limit, the equality in the relation (4.10) remains true for all functions \(u \in L^2(\Omega) \) such that \((1-x)(\partial u/\partial x), (\partial/\partial x)((1-x)(\partial u/\partial x)) \in L^2(\Omega)\), and satisfying condition (1.1d).
The operator $A(t)$ has a continuous inverse in $L^2(0,1)$ defined by

$$A^{-1}(t)g = -\int_0^x \frac{1}{1-\zeta} \frac{1}{a(\zeta,t)} \int_0^\zeta g(\eta,t) d\eta d\zeta + C(t) \int_0^x \frac{1}{1-\zeta} \frac{1}{a(\zeta,t)} d\zeta,$$ \hspace{1cm} (4.11)

where

$$C(t) = \frac{\int_0^1 (d\zeta/a(\zeta,t)) \int_0^\zeta g(\eta,t) d\eta}{\int_0^1 (d\zeta/a(\zeta,t))}. \hspace{1cm} (4.12)$$

Then, we have $\int_0^1 A^{-1}(t)g dx = 0$, hence the function $u_\epsilon = (J_\epsilon)^{-1}u$ can be represented in the form

$$u_\epsilon = (J_\epsilon)^{-1} A^{-1}(t) A(t) u.$$ \hspace{1cm} (4.13)

Then

$$B_\epsilon(t)g = \frac{\partial^4 a}{\partial t^3 \partial x} J_\epsilon^{-1} \left[\frac{1}{a(x,t)} \left(\int_0^x g(\eta,t) d\eta - C(t) \right) \right]$$

$$+ \frac{\partial^3 a}{\partial t^3} J_\epsilon^{-1} \left[\frac{g}{a} - \frac{a_x}{a^2(x,t)} \left(\int_0^x g(\eta,t) d\eta - C(t) \right) \right]$$

$$+ 3 \frac{\partial}{\partial t} \frac{\partial^2 a}{\partial t^2 \partial x} \frac{\partial}{\partial t} J_\epsilon^{-1} \left[\frac{1}{a(x,t)} \left(\int_0^x g(\eta,t) d\eta - C(t) \right) \right]$$

$$+ \frac{\partial a}{\partial t} \frac{\partial}{\partial t} J_\epsilon^{-1} \frac{g}{a} - \frac{a_x}{a^2(x,t)} \left(\int_0^x g(\eta,t) d\eta - C(t) \right).$$ \hspace{1cm} (4.14)

The adjoint of $B_\epsilon(t)$ has the form

$$B^*_\epsilon(t) = \frac{1}{a} (J_\epsilon^{-1})^* \left[\frac{\partial^3 a}{\partial t^3} \frac{h}{a^2} \right] + \frac{3}{a} (J_\epsilon^{-1})^* \frac{\partial}{\partial t} \left(\frac{\partial a}{\partial t} \frac{\partial h}{\partial t} \right)$$

$$+ (G\epsilon h)(x) - \frac{\int_0^1 (1/a(\eta,t)) d\eta}{\int_0^1 (1/a(x,t)) dx} (G\epsilon h)(1),$$ \hspace{1cm} (4.15)
where

\[
(G_\varepsilon h)(x) = \int_0^x \left(-\frac{3}{a(\zeta,t)} (J_{\varepsilon}^{-1})^* \frac{\partial}{\partial t} \left(\frac{\partial^2 h}{\partial t \partial \zeta} \right) \right.
+ 3 \frac{\partial a}{\partial \zeta} \frac{1}{a^2(\zeta,t)} (J_{\varepsilon}^{-1})^* \frac{\partial}{\partial t} \left(\frac{\partial h}{\partial t} \right)
\left. - \frac{1}{a(\zeta,t)} (J_{\varepsilon}^{-1})^* \left(\frac{\partial^4 a}{\partial t^3 \partial \zeta} h \right) + \frac{\partial a}{\partial \zeta} \frac{1}{a^2(\zeta,t)} (J_{\varepsilon}^{-1})^* \left(\frac{\partial^3 a}{\partial t^3} h \right) \right) d\zeta.
\]

Consequently, equality (4.10) becomes

\[
- \int_{\Omega} u_N \frac{\partial^3 v_\varepsilon^*}{\partial \zeta^3} dx dt = \int_{\Omega} A(t) u h_\varepsilon dx dt,
\]

where \(h_\varepsilon = v_\varepsilon^* - \varepsilon B_\varepsilon v_\varepsilon^*\).

The left-hand side of (4.17) is a continuous linear functional of \(u\). Hence the function \(h_\varepsilon\) has the derivatives \((1-x)(\partial h_\varepsilon / \partial x), (\partial / \partial x)((1-x)(\partial h_\varepsilon / \partial x)) \in L^2(\Omega)\) and the following conditions are satisfied: \(h_\varepsilon|_{x=0} = 0, h_\varepsilon|_{x=1} = 0,\) and \((1-x)(\partial h_\varepsilon / \partial x)|_{x=1} = 0\).

From the equality

\[
(1-x) \frac{\partial h_\varepsilon}{\partial x} = \left[I - \varepsilon \frac{1}{a} (J_{\varepsilon}^{-1})^* \frac{\partial^3 a}{\partial \zeta^3} \right] (1-x) \frac{\partial v_\varepsilon^*}{\partial x} - 3 \varepsilon \frac{1}{a} (J_{\varepsilon}^{-1})^* \frac{\partial}{\partial t} \left(\frac{\partial a}{\partial t} (1-x) \frac{\partial v_\varepsilon^*}{\partial x} \right),
\]

and since the operator \((J_{\varepsilon}^{-1})^*\) is bounded in \(L^2(\Omega)\), for sufficiently small \(\varepsilon\), we have \(\|e(1/a)(J_{\varepsilon}^{-1})^* (\partial^3 a / \partial \zeta^3)\| < 1\). Hence the operator \(I - \varepsilon (1/a)(J_{\varepsilon}^{-1})^* (\partial^3 a / \partial t^3)\) has a bounded inverse in \(L^2(\Omega)\). We conclude that \((1-x)(\partial v_\varepsilon^* / \partial x) \in L^2(\Omega)\).

Similarly, we conclude that \((\partial / \partial x)((1-x)(\partial v_\varepsilon^* / \partial x))\) exists and belongs to \(L^2(\Omega)\), and the following conditions are satisfied:

\[
v_\varepsilon^*|_{x=0} = 0, \quad v_\varepsilon^*|_{x=1} = 0, \quad (1-x) \frac{\partial v_\varepsilon^*}{\partial x}|_{x=1} = 0.
\]

Substituting \(u = \int_0^t \int_0^\eta \int_0^T \exp(c\tau) v_\varepsilon^*(\tau) d\tau d\zeta d\eta\) in (4.4), where the constant \(c\) satisfies (3.3), we obtain

\[
\int_{\Omega} \exp(ct) v_\varepsilon^* N v_\varepsilon^* dx dt = - \int_{\Omega} A(t) u v_\varepsilon^* dx dt.
\]
Using the properties of smoothing operators, we have

\[
\int_{\Omega} \exp(ct) v^*_\varepsilon N \overline{\sigma} dx dt = - \int_{\Omega} A(t) u \overline{v^*_\varepsilon} dx dt - \varepsilon \int_{\Omega} A(t) u \frac{\partial^3 v^*_\varepsilon}{\partial t^3} dx dt,
\]

(4.21)

and from

\[
\varepsilon \text{Re} \int_{\Omega} A(t) u \frac{\partial^3 v^*_\varepsilon}{\partial t^3} dx dt = \varepsilon \int_{\Omega} (1 - x) a \frac{\partial u}{\partial x} \frac{\partial}{\partial t} \frac{\partial^3 v^*_\varepsilon}{\partial t^3} dx dt
\]

\[
= - \varepsilon \text{Re} \int_{\Omega} (1 - x) \frac{\partial a}{\partial t} \frac{\partial u}{\partial x} \frac{\partial}{\partial t} \frac{\partial^3 v^*_\varepsilon}{\partial t^3} dx dt
\]

\[
+ \varepsilon \text{Re} \int_{\Omega} (1 - x) \frac{\partial a}{\partial t} \frac{\partial^2 u}{\partial t \partial x} \frac{\partial}{\partial t} \frac{\partial^2 v^*_\varepsilon}{\partial t \partial x} dx dt
\]

\[
+ \varepsilon \int_{\Omega} a \exp(-ct)(1 - x) \left| \frac{\partial v^*_\varepsilon}{\partial x} \right|^2 dx dt
\]

\[
+ \varepsilon \text{Re} \int_{\Omega} (1 - x) \frac{\partial a}{\partial t} \frac{\partial^2 u}{\partial t \partial x} \frac{\partial}{\partial t} \frac{\partial v^*_\varepsilon}{\partial t} dx dt,
\]

(4.22)

we have

\[
\varepsilon \text{Re} \int_{\Omega} A(t) u \frac{\partial^3 v^*_\varepsilon}{\partial t^3} dx dt
\]

\[
\geq \varepsilon \int_{\Omega} a \exp(+ct)(1 - x) \left| \frac{\partial v^*_\varepsilon}{\partial x} \right|^2 dx dt
\]

\[
- \varepsilon \int_{\Omega} (1 - x) \frac{1}{4a} \left(\frac{\partial a}{\partial t} \right)^2 \exp(-ct) \left| \frac{\partial^3 u}{\partial t^3} \right|^2 dx dt
\]

\[
- \varepsilon \int_{\Omega} a \exp(+ct)(1 - x) \left| \frac{\partial v^*_\varepsilon}{\partial x} \right|^2 dx dt
\]

\[
- \varepsilon \int_{\Omega} \frac{1 - x}{2} \left(\frac{\partial a}{\partial t} \right)^2 \exp(-ct) \left| \frac{\partial u}{\partial t} \right|^2 dx dt
\]

\[
- \varepsilon \int_{\Omega} \exp(+ct) \frac{1 - x}{2} \left| \frac{\partial^2 v^*_\varepsilon}{\partial t^2 \partial x} \right|^2 dx dt
\]

\[
- \varepsilon \int_{\Omega} \exp(+ct) \frac{1 - x}{2} \left| \frac{\partial^3 v^*_\varepsilon}{\partial t^3} \right|^2 dx dt
\]

\[
- \varepsilon \int_{\Omega} \frac{1 - x}{2} \left(\frac{\partial a}{\partial t} \right)^2 \exp(-ct) \left| \frac{\partial^2 u}{\partial t \partial x} \right|^2 dx dt,
\]

(4.23)
Integrating the first term on the right-hand side by parts in (4.21), we obtain

\[
\text{Re} \int_{\Omega} A(t)u^* v^*_x dx \, dt \\
\geq -\frac{3}{2} \int_{\Omega} (1-x) \exp(-ct) \left(\frac{\partial a}{\partial t} - ca \right) \left| \frac{\partial^2 u}{\partial t \partial x} \right|^2 \, dx \, dt \\
+ \frac{1}{2} \int_{0}^{1} (1-x) \exp(-ct) \left(a - \frac{\partial a}{\partial t} - ca \right) \left| \frac{\partial^2 u}{\partial t \partial x} \right|^2 \, dx \bigg|_{t=T} \\
- \frac{1}{2} \int_{0}^{1} (1-x) \exp(-ct) \left\{ \frac{\partial^2 a}{\partial t^2} - 2c \frac{\partial a}{\partial t} + c^2 a + \frac{\partial a}{\partial t} - ca \right\} \left| \frac{\partial u}{\partial x} \right|^2 \, dx \bigg|_{t=T} \\
+ \frac{1}{2} \int_{\Omega} (1-x) \exp(-ct) \left\{ \frac{\partial^3 a}{\partial t^3} - 3c \frac{\partial^2 a}{\partial t^2} + 3c^2 \frac{\partial a}{\partial t} - c^3 a \right\} \left| \frac{\partial u}{\partial x} \right|^2 \, dx \, dt.
\]

Combining (4.23) and (4.24), we get

\[
\text{Re} \int_{\Omega} \exp(ct) v^*_x N \overline{v} dx \, dt \\
\leq \frac{3}{2} \int_{\Omega} (1-x) \exp(-ct) \left(c_1 - ca_{0} \right) \left| \frac{\partial^2 u}{\partial t \partial x} \right|^2 \, dx \, dt \\
- \frac{1}{2} \int_{0}^{1} (1-x) \exp(-ct) \left\{ a_{0} - c'_1 - ca_{1} \right\} \left| \frac{\partial^2 u}{\partial t \partial x} \right|^2 \, dx \bigg|_{t=T} \\
+ \frac{1}{2} \int_{0}^{1} (1-x) \exp(-ct) \left\{ c_2 - 2c'_1 c - c^2 a_{1} - c'_1 + ca_{1} \right\} \left| \frac{\partial u}{\partial x} \right|^2 \bigg|_{t=T} \, dx \\
- \frac{1}{2} \int_{\Omega} (1-x) \exp(-ct) \left\{ c'_2 - 3c_2 c + 3c^2 c'_1 - c^3 a_{1} \right\} \left| \frac{\partial u}{\partial x} \right|^2 \, dx \, dt \\
+ \varepsilon \left(\int_{\Omega} (1-x) \exp(-ct) \frac{c^2_1}{4a_0} \left| \frac{\partial^3 u}{\partial t^2 \partial x} \right|^2 \, dx \, dt \right. \\
\left. + \int_{\Omega} (1-x) \exp(-ct) \frac{c^2_1}{2} \left| \frac{\partial u}{\partial x} \right|^2 \, dx \, dt \right. \\
\left. + \int_{\Omega} \frac{1-x}{2} \exp(ct) \left| \frac{\partial^3 v^*_x}{\partial t^2 \partial x} \right|^2 \, dx \, dt \right. \\
\left. + \int_{\Omega} (1-x) \exp(-ct) \frac{c^2_1}{2} \left| \frac{\partial^2 u}{\partial t \partial x} \right|^2 \, dx \, dt \right. \\
\left. + \int_{\Omega} \frac{1-x}{2} \exp(ct) \left| \frac{\partial^2 v^*_x}{\partial t \partial x} \right|^2 \, dx \, dt \right) \\
\]

(4.25)
Using conditions (3.3) and inequalities (4.23) and (4.24), we obtain

$$\text{Re} \int_{\Omega} \exp(ct)v N\bar{v} \, dx \, dt \leq 0, \quad \text{as } \varepsilon \rightarrow 0. \quad (4.26)$$

Since \(\text{Re} \int_{\Omega} \exp(ct)v J_x \bar{v} \, dx \, dt = 0 \), then \(v = 0 \) a.e.

Finally, from the equality \((1 - x)v + J_x v = (1 - x)w\), we conclude \(w = 0 \).

\[\square\]

Theorem 4.2. The range \(R(\bar{L}) \) of \(\bar{L} \) coincides with \(F \).

Proof. Since \(F \) is Hilbert space, then \(R(\bar{L}) = F \) if and only if the relation

$$\int_{\Omega} (1 - x)^2 \mathcal{E} u \bar{f} \, dx \, dt = 0, \quad (4.27)$$

for arbitrary \(u \in D_0(L) \) and \(\mathcal{F} \in F \), implies that \(f = 0 \).

Taking \(u \in D_0(L) \) in (4.27) and using Lemma 4.1, we obtain that \(w = (1 - x)f = 0 \), then \(f = 0 \).

\[\square\]

References

A. V. Kartynnik, A three-point mixed problem with an integral condition with respect to the space variable for second-order parabolic equations, Differ. Equ. 26 (1990), no. 9, 1160–1166.

P. Shi and M. Shillor, On design of contact patterns in one-dimensional thermoeelasticity, Theoretical Aspects of Industrial Design (Wright-Patterson Air Force Base, Ohio, 1990), SIAM, Pennsylvania, 1992, pp. 76–82.

M. Denche: Laboratoire Equations Différentielles, Département de Mathématiques, Faculté des Sciences, Université Mentouri, 25000 Constantine, Algeria

E-mail address: denech@wissal.dz

A. Memou: Laboratoire Equations Différentielles, Département de Mathématiques, Faculté des Sciences, Université Mentouri, 25000 Constantine, Algeria
Special Issue on
Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>December 1, 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Edson Denis Leonel, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24A, 1315 Bela Vista, 13506-700 Rio Claro, SP, Brazil; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob’evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru

Hindawi Publishing Corporation
http://www.hindawi.com