SOME RESULTS ON FIXED POINT THEOREMS FOR MULTIVALUED MAPPINGS IN COMPLETE METRIC SPACES

JEONG SHEOK UME, BYUNG SOO LEE, and SUNG JIN CHO

Received 17 October 2001

Using the concept of \(w \)-distance, we improve some well-known fixed point theorems.

2000 Mathematics Subject Classification: 47H10.

1. Introduction. Recently, Ume [3] improved the fixed point theorems in a complete metric space using the concept of \(w \)-distance, introduced by Kada, Suzuki, and Takahashi [2], and more general contractive mappings than quasi-contractive mappings.

In this paper, using the concept of \(w \)-distance, we first prove common fixed point theorems for multivalued mappings in complete metric spaces, then these theorems are used to improve Cirić’s fixed point theorem [1], Kada-Suzuki-Takahashi’s fixed point theorem [2], and Ume’s fixed point theorem [3].

2. Preliminaries. Throughout, we denote by \(\mathbb{N} \) the set of all positive integers and by \(\mathbb{R} \) the set of all real numbers.

Definition 2.1 (see [2]). Let \((X, d) \) be a metric space, then a function \(p : X \times X \to [0, \infty) \) is called a \(w \)-distance on \(X \) if the following are satisfied:

1. \(p(x, z) \leq p(x, y) + p(y, z) \) for all \(x, y, z \in X \);
2. for any \(x \in X \), \(p(x, \cdot) : X \to [0, \infty) \) is lower semicontinuous;
3. for any \(\epsilon > 0 \), there exists \(\delta > 0 \) such that \(p(z, x) \leq \delta \) and \(p(z, y) \leq \delta \) imply \(d(x, y) \leq \epsilon \).

Definition 2.2. Let \((X, d) \) be a metric space with a \(w \)-distance \(p \), then

1. for any \(x \in X \) and \(A \subseteq X \), \(d(x, A) := \inf \{ d(x, y) : y \in A \} \) and \(d(A, x) := \inf \{ d(y, x) : y \in A \} \);
2. for any \(x \in X \) and \(A \subseteq X \), \(p(x, A) := \inf \{ p(x, y) : y \in A \} \) and \(p(A, x) := \inf \{ p(y, x) : y \in A \} \);
3. for any \(A, B \subseteq X \), \(p(A, B) := \inf \{ p(x, y) : x \in A, y \in B \} \);
4. \(CB_p(X) = \{ A \mid A \text{ is nonempty closed subset of } X \text{ and } \sup_{x,y \in A} p(x, y) < \infty \} \).

The following lemmas are fundamental.

Lemma 2.3 (see [2]). Let \(X \) be a metric space with a \(w \)-distance \(p \), then

1. for any \(x \in X \) and \(A \subseteq X \), \(d(x, A) := \inf \{ d(x, y) : y \in A \} \) and \(d(A, x) := \inf \{ d(y, x) : y \in A \} \);
2. for any \(x \in X \) and \(A \subseteq X \), \(p(x, A) := \inf \{ p(x, y) : y \in A \} \) and \(p(A, x) := \inf \{ p(y, x) : y \in A \} \);
3. for any \(A, B \subseteq X \), \(p(A, B) := \inf \{ p(x, y) : x \in A, y \in B \} \);
4. \(CB_p(X) = \{ A \mid A \text{ is nonempty closed subset of } X \text{ and } \sup_{x,y \in A} p(x, y) < \infty \} \).
(1) if \(p(x_n, y) \leq \alpha_n \) and \(p(x_n, z) \leq \beta_n \) for any \(n \in \mathbb{N} \), then \(y = z \). In particular, if \(p(x, y) = 0 \) and \(p(x, z) = 0 \), then \(y = z \);

(2) if \(p(x_n, y_n) \leq \alpha_n \) and \(p(x_n, z) \leq \beta_n \) for any \(n \in \mathbb{N} \), then \(\{y_n\} \) converges to \(z \);

(3) if \(p(x_n, x_m) \leq \alpha_n \) for any \(n, m \in \mathbb{N} \) with \(m > n \), then \(\{x_n\} \) is a Cauchy sequence;

(4) if \(p(y, x_n) \leq \alpha_n \) for any \(n \in \mathbb{N} \), then \(\{x_n\} \) is a Cauchy sequence.

Lemma 2.4 (see [3]). Let \(X \) be a metric space with a metric \(d \), let \(p \) be a \(w \)-distance on \(X \), and let \(T \) be a mapping of \(X \) into itself satisfying

\[
p(Tx, Ty) \leq q \cdot \max\{p(x, y), p(x, Tx), p(y, Ty), p(x, Ty), p(y, Tx)\}
\]

for all \(x, y \in X \) and some \(q \in [0, 1) \). Then

(1) for each \(x \in X \), \(n \in \mathbb{N} \), and \(i, j \in \mathbb{N} \) with \(i \leq n \),

\[
p(T^i x, T^j x) \leq q \cdot \delta(O(x, n));
\]

(2) for each \(x \in X \) and \(n \in \mathbb{N} \), there exist \(k, l \in \mathbb{N} \) with \(k, l \leq n \) such that

\[
\delta(O(x, n)) = \max\{p(x, y), p(x, T^k x), p(T^l x, x)\};
\]

(3) for each \(x \in X \),

\[
\delta(O(x, \infty)) \leq \frac{1}{1-q} \left\{ p(x, x) + p(x, Tx) + p(Tx, x) \right\};
\]

(4) for each \(x \in X \), \(\{T^n x\}_{n=1}^{\infty} \) is a Cauchy sequence.

3. Main results

Theorem 3.1. Let \(X \) be a complete metric space with a metric \(d \) and let \(p \) be a \(w \)-distance on \(X \). Suppose that \(S \) and \(T \) are two mappings of \(X \) into \(CB_p(X) \) and \(\varphi : X \times X \to [0, \infty) \) is a mapping such that

\[
\max\{p(u_1, u_2), p(v_1, v_2)\} \leq q \cdot \varphi(x, y)
\]

for all nonempty subsets \(A, B \) of \(X \), \(u_1 \in SA, u_2 \in S^2 A, v_1 \in TB, v_2 \in T^2 B, x \in A, y \in B \), and some \(q \in [0, 1) \),

\[
\sup \left\{ \sup \left(\frac{\varphi(x, y)}{\min\{p(x, SA), p(y, TB)\}} : x \in A, y \in B \right) : A, B \subseteq X \right\} < \frac{1}{q},
\]

\[
\inf \left\{ p(y, u) + p(x, x) + p(y, Ty) : x, y \in X \right\} > 0,
\]

for every \(u \in X \) with \(u \notin Su \) or \(u \notin Tu \), where \(SA = \bigcup_{a \in A} Sa \). Then \(S \) and \(T \) have a common fixed point in \(X \).

Proof. Let

\[
\beta = \sup \left\{ \sup \left(\frac{\varphi(x, y)}{\min\{p(x, SA), p(y, TB)\}} : x \in A, y \in B \right) : A, B \subseteq X \right\},
\]

for every \(u \in X \) with \(u \notin Su \) or \(u \notin Tu \), where \(SA = \bigcup_{a \in A} Sa \). Then \(S \) and \(T \) have a common fixed point in \(X \).
and \(k = \beta q \). Define \(x_{n+1} \in Sx_n \) and \(y_{n+1} \in Ty_n \) for all \(n \in \mathbb{N} \). Then \(x_n \in Sx_{n-1} \), \(x_{n+1} \in S^2x_{n-1} \), \(y_n \in Ty_{n-1} \), and \(y_{n+1} \in T^2y_{n-1} \). From (3.1) and (3.2), we have

\[
p(x_n, x_{n+1}) \leq kp(x_{n-1}, x_n) \leq \cdots \leq k^{n-1}p(x_1, x_2), \quad (3.5)
\]

\[
p(y_n, y_{n+1}) \leq kp(y_{n-1}, y_n) \leq \cdots \leq k^{n-1}p(y_1, y_2), \quad (3.6)
\]

for all \(n \in \mathbb{N} \) and some \(k \in [0,1) \). Let \(n \) and \(m \) be any positive integers such that \(n < m \). Then, from (3.6), we obtain

\[
p(y_n, y_m) \leq p(y_n, y_{n+1}) + \cdots + p(y_{m-1}, y_m)
= \sum_{i=0}^{m-n-1} p(y_{n+i}, y_{n+i+1})
\leq \sum_{i=0}^{m-n-1} k^{n+i-1}p(y_1, y_2)
\leq \frac{k^{n-1}}{(1-k)}p(y_1, y_2).
\]

By Lemma 2.3, \(\{y_n\} \) is a Cauchy sequence. Since \(X \) is complete, \(\{y_n\} \) converges to \(u \in X \). Then, since \(p(y_n, \cdot) \) is lower semicontinuous, from (3.7) we have

\[
p(y_n, u) \leq \lim_{m \to \infty} \inf p(y_n, y_m) \leq \frac{k^{n-1}}{(1-k)}p(y_1, y_2). \quad (3.8)
\]

Suppose that \(u \notin Su \) or \(u \notin Tu \). Then, by (3.3), (3.5), (3.6), and (3.8), we have

\[
0 < \inf \{p(y, u) + p(x, Sx) + p(y, Ty) : x, y \in X\}
\leq \inf \{p(y_n, u) + p(x_n, x_{n+1}) + p(y_n, y_{n+1}) : n \in \mathbb{N}\}
\leq \inf \left\{ \frac{k^{n-1}}{(1-k)}p(y_1, y_2) + k^{n-1}p(x_1, x_2) + k^{n-1}p(y_1, y_2) : n \in \mathbb{N}\right\}
= \frac{2-k}{(1-k)}p(y_1, y_2) + k^{n-1}p(x_1, x_2) + \inf \{k^{n-1} : n \in \mathbb{N}\}
= 0.
\]

This is a contradiction. Therefore we have \(u \in Su \) and \(u \in Tu \). \(\square \)

Theorem 3.2. Let \(X \) be a complete metric space with a metric \(d \) and let \(p \) be a \(w \)-distance on \(X \). Suppose that \(S \) and \(T \) are two mappings of \(X \) into \(\text{CB}_p(X) \) and \(\varphi : X \times X \to [0, \infty) \) is a mapping such that

\[
\max \{p(u_1, u_2), p(v_1, v_2)\} \leq q \cdot \varphi(x, y) \quad (3.10)
\]

for all \(x, y \in X, u_1 \in Sx, u_2 \in S^2x, v_1 \in Ty, v_2 \in T^2y, \) and some \(q \in [0,1) \),

\[
\sup \left\{ \sup \left(\frac{\varphi(x, y)}{\min \{p(x, Sx), p(y, Ty)\} : x \in A, y \in B\} : A, B \subseteq X \right) \right\} < \frac{1}{q}, \quad (3.11)
\]

and (3.3) is satisfied. Then \(S \) and \(T \) have a common fixed point in \(X \).
Proof. By a method similar to that in the proof of Theorem 3.1, the result follows.

Theorem 3.3. Let X be a complete metric space with a metric d and let p be a w-distance on X. Suppose that T is a mapping of X into $CB_p(X)$ and $\psi : X \to [0, \infty)$ is a mapping such that

$$p(u_1, u_2) \leq q \cdot \psi(x)$$

(3.12)

for all $x \in X$, $u_1 \in Tx$, $u_2 \in T^2x$ and some $q \in [0,1)$,

$$\sup \left\{ \frac{\psi(x)}{p(x, Tx)} : x \in X \right\} < \frac{1}{q},$$

(3.13)

$$\inf \{ p(x, u) + p(x, Tx) : x \in X \} > 0,$$

for every $u \in X$ with $u \notin Tu$. Then T has a fixed point in X.

Proof. By a method similar to that in the proof of Theorem 3.1, the result follows.

Theorem 3.4. Let X be a complete metric space with a metric d and let p be a w-distance on X. Suppose that S and T are self-mapping of X and $\varphi : X \times X \to [0, \infty)$ is a mapping such that

$$\max \{ p(Sx, S^2x), p(Ty, T^2y) \} \leq q \cdot \varphi(x, y)$$

(3.14)

for all $x, y \in X$ and some $q \in [0,1)$,

$$\sup \left\{ \frac{\varphi(x, y)}{\min\left\{ p(x, Sx), p(y, Ty)\right\}} : x, y \in X \right\} < \frac{1}{q},$$

(3.15)

$$\inf \{ p(y, u) + p(x, Sx) + p(y, Ty) : x, y \in X \} > 0,$$

for every $u \in X$ with $u \neq Su$ or $u \neq Tu$. Then S and T have a common fixed point in X.

Proof. By a method similar to that in the proof of Theorem 3.1, the result follows.

From Theorem 3.1, we have the following corollary.

Corollary 3.5. Let X be a complete metric space with a metric d and let p be a w-distance on X. Suppose that S and T are two mappings of X into $CB_p(X)$ and $\varphi : X \times X \to [0, \infty)$ is a mapping such that

$$\max \\left\{ \sup\left\{ p(u_1, u_2) : u_1 \in Sx, u_2 \in S^2x \right\}, \sup\left\{ p(v_1, v_2) : v_1 \in Tx, v_2 \in T^2x \right\} \right\} \leq q \cdot \varphi(x, y)$$

(3.16)

for all $x, y \in X$ and some $q \in [0,1)$, and that (3.3) and (3.11) are satisfied. Then S and T have a common fixed point in X.
From Theorem 3.3, we have the following corollaries.

Corollary 3.6. Let X be a complete metric space with a metric d and let p be a w-distance on X. Suppose that T is a mapping of X into $CB_p(X)$ and $\psi : X \to [0, \infty)$ is a mapping such that

$$\sup \{ p(u_1, u_2) : u_1 \in Tx, u_2 \in T^2x \} \leq q \cdot \psi(x)$$

(3.17)

for all $x \in X$ and some $q \in [0, 1)$, and that (3.13) is satisfied. Then T has a fixed point in X.

Corollary 3.7. Let X be a complete metric space with a metric d and let p be a w-distance on X. Suppose that T is a self-mapping of X and $\psi : X \to [0, \infty)$ is a mapping such that

$$p(Tx, T^2x) \leq q \cdot \psi(x)$$

(3.18)

for all $x \in X$ and some $q \in [0, 1)$,

$$\sup \left\{ \psi(x) \over p(x, Tx) : x \in X \right\} < {1 \over q},$$

$$\inf \{ p(x, u) + p(x, Tx) : x \in X \} > 0,$$

(3.19)

for every $u \in X$ with $u \neq Tu$. Then T has a fixed point in X.

From Corollary 3.7, we have the following corollaries.

Corollary 3.8 (see [3]). Let X be a complete metric space with a metric d and let p be a w-distance on X. Suppose that T is a self-mapping of X such that

$$p(Tx, Ty) \leq q \cdot \max \{ p(x, y), p(x, Tx), p(y, Ty), p(x, Ty), p(y, Tx) \}$$

(3.20)

for all $x, y \in X$ and some $q \in [0, 1)$, and that

$$\inf \{ p(x, u) + p(x, Tx) : x \in X \} > 0$$

(3.21)

for every $u \in X$ with $u \neq Tu$. Then T has a unique fixed point in X.

Proof. By (3.20) and Lemma 2.4(3), we have

$$\sup \{ p(T^i x, T^j x) : i, j \in \mathbb{N} \cup \{0\} \} < \infty$$

(3.22)

for every $x \in X$. Thus we may define a function $r : X \times X \to [0, \infty)$ by

$$r(x, y) = \max \{ p(T^i x, T^j x) : i, j \in \mathbb{N} \cup \{0\}, p(x, y) \}$$

(3.23)

for every $x, y \in X$. Clearly, r is a w-distance on X. Let x be a given element of X, then, by using Lemma 2.4(1), (3.20), and (3.23), we have

$$r(Tx, T^2x) = \sup \{ p(T^i x, T^j x) : i, j \in \mathbb{N} \} \leq q \cdot \sup \{ p(T^i x, T^j x) : i, j \in \mathbb{N} \cup \{0\} \}$$

(3.24)

and

$$= q \cdot r(x, Tx).$$
By (3.21) and (3.23), we obtain
\[
\inf \{ r(x,u) + r(x,Tx) : x \in X \} > 0 \tag{3.25}
\]
for every \(u \in X \) with \(u \neq Tu \). From (3.24), (3.25), and Corollary 3.7, \(T \) has a fixed point in \(X \). By (3.20) and Lemma 2.4, it is clear that the fixed point of \(T \) is unique. \(\square \)

Corollary 3.9 (see [2]). Let \(X \) be a complete metric space, let \(p \) be a \(w \)-distance on \(X \), and let \(T \) be a mapping from \(X \) into itself. Suppose that there exists \(q \in [0,1) \) such that
\[
p(Tx, T^2x) \leq q \cdot p(x,Tx) \tag{3.26}
\]
for every \(x \in X \) and that
\[
\inf \{ p(x,y) + p(x,Tx) : x \in X \} > 0 \tag{3.27}
\]
for every \(y \in X \) with \(y \neq Ty \). Then \(T \) has a fixed point in \(X \).

Proof. Define \(\psi : X \to [0,\infty) \) by
\[
\psi(x) = p(x,Tx) \tag{3.28}
\]
for all \(x \in X \). Thus the conditions of Corollary 3.7 are satisfied. Hence \(T \) has a fixed point in \(X \). \(\square \)

From Corollary 3.8, we have the following corollary.

Corollary 3.10 (see [1]). Let \(X \) be a complete metric space with a metric \(d \) and let \(T \) be a mapping from \(X \) into itself. Suppose that \(T \) is a quasicontraction, that is, there exists \(q \in [0,1) \) such that
\[
d(Tx, Ty) \leq q \cdot \max \{ d(x,y), d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx) \} \tag{3.29}
\]
for every \(x,y \in X \). Then \(T \) has a unique fixed point in \(X \).

Proof. It is clear that the metric \(d \) is a \(w \)-distance and
\[
\inf \{ d(x,y) + d(x,Tx) : x \in X \} > 0 \tag{3.30}
\]
for every \(y \in X \) with \(y \neq Ty \). Thus, by Corollary 3.8 or 3.9, \(T \) has a unique fixed point in \(X \). \(\square \)

Acknowledgment. This work was supported by grant No. 2001-1-10100-005-2 from the Basic Research Program of the Korea Science & Engineering Foundation.

References

JEONG SHEOK UME: DEPARTMENT OF APPLIED MATHEMATICS, CHANGWON NATIONAL UNIVERSITY, CHANGWON 641-773, KOREA
E-mail address: jsume@sarim.changwon.ac.kr

BYUNG SOO LEE: DEPARTMENT OF MATHEMATICS, KYUNGSUNG UNIVERSITY, PUSAN 608-736, KOREA
E-mail address: bslee@star.kyungsung.ac.kr

SUNG JIN CHO: DEPARTMENT OF APPLIED MATHEMATICS, PUKYONG NATIONAL UNIVERSITY, PUSAN 608-737, KOREA
E-mail address: sjcho@dolphin.pknu.ac.kr
Space dynamics is a very general title that can accommodate a long list of activities. This kind of research started with the study of the motion of the stars and the planets back to the origin of astronomy, and nowadays it has a large list of topics. It is possible to make a division in two main categories: astronomy and astrodynamics. By astronomy, we can relate topics that deal with the motion of the planets, natural satellites, comets, and so forth. Many important topics of research nowadays are related to those subjects. By astrodynamics, we mean topics related to spaceflight dynamics.

It means topics where a satellite, a rocket, or any kind of man-made object is travelling in space governed by the gravitational forces of celestial bodies and/or forces generated by propulsion systems that are available in those objects. Many topics are related to orbit determination, propagation, and orbital maneuvers related to those spacecrafts. Several other topics that are related to this subject are numerical methods, nonlinear dynamics, chaos, and control.

The main objective of this Special Issue is to publish topics that are under study in one of those lines. The idea is to get the most recent researches and published them in a very short time, so we can give a step in order to help scientists and engineers that work in this field to be aware of actual research. All the published papers have to be peer reviewed, but in a fast and accurate way so that the topics are not outdated by the large speed that the information flows nowadays.

Before submission authors should carefully read over the journal's Author Guidelines, which are located at http://www.hindawi.com/journals/mpe/guidelines.html. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Time</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>July 1, 2009</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>October 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>January 1, 2010</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Antonio F. Bertachini A. Prado, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; prado@dem.inpe.br

Guest Editors

Maria Cecilia Zanardi, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; cecilia@feg.unesp.br

Tadashi Yokoyama, Universidade Estadual Paulista (UNESP), Rio Claro, 13506-900 São Paulo, Brazil; tadashi@rc.unesp.br

Silvia Maria Giuliani Winter, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; silvia@feg.unesp.br