COMMON FIXED POINT THEOREMS OF
CONTRACTIVE-TYPE MAPPINGS

HEE SOO PARK and JEONG SHEOK UME

Received 10 April 2004

Using the concept of D-metric we prove some common fixed point theorems for generalized contractive mappings on a complete D-metric space. Our results extend, improve, and unify results of Fisher and Ćirić.

2000 Mathematics Subject Classification: 47H10.

1. Introduction. The Banach contraction mapping principle is well known. There are many generalizations of that principle to single- and multivalued mappings (see [1, 4, 5, 10, 11, 12]). The study of maps satisfying some contractive conditions has been the center of rigorous research activity since such mappings have many applications (see [2, 3, 9, 13, 14, 15]).

In 1998, Ćirić [6] proved a common fixed point theorem for nonlinear mappings on a complete metric space: let (X,d) be a complete metric space and $S,T:X \rightarrow X$ self-maps such that $d(STx,TSy) \leq \max\{\varphi_1[(1/2)(d(x,Sy)+d(y,Tx))],\varphi_2[d(x,Tx)],\varphi_3[d(y,Sy)],\varphi_4[d(x,y)]\}$ for all x,y in X, where $\varphi_i \in \Phi$ $(i = 1,2,3,4)$. If S or T is continuous, then S and T have a unique common fixed point. This result improved and extended a theorem of Fisher [8].

In this paper, using the concept of D-metric, we prove common fixed point theorems which extend, improve, and unify the corresponding theorems of Fisher [8] and Ćirić [6].

Throughout the paper, by Φ we denote the collection of functions $\varphi : [0, \infty) \rightarrow [0, \infty)$ which are continuous from the right, nondecreasing, and which satisfy the condition $\varphi(t) < t$ for all $t > 0$. We denote by \mathbb{N} the set of all positive integers.

2. Preliminaries. Before proving the main theorem, we will introduce some definitions and lemmas.

Definition 2.1 [7]. Let X be any nonempty set. A D-metric for X is a function $D:X \times X \times X \rightarrow \mathbb{R}$ such that

1. $D(x,y,z) \geq 0$ for all $x,y,z \in X$ and equality holds if and only if $x = y = z$,
2. $D(x,y,z) = D(x,z,y) = D(y,x,z) = D(y,z,x) = D(z,x,y) = D(z,y,x)$ for all $x,y,z \in X$,
3. $D(x,y,z) \leq D(x,y,a) + D(x,a,z) + D(a,y,z)$ for all $x,y,z \in X$.

If D is a D-metric for X, then the ordered pair (X,D) is called a D-metric space or the set X, together with a D-metric, is called a D-metric space. We note that to
a given ordinary metric space \((X,d)\) there corresponds a \(D\)-metric space \((X,D)\), but the converse may not be true (see Example 3.3). In this sense the \(D\)-metric spaces are the generalizations of the ordinary metric space.

Definition 2.2 [7]. A sequence \(\{x_n\}\) of points of a \(D\)-metric space \(X\) converges to a point \(x \in X\) if for an arbitrary \(\epsilon > 0\), there exists an \(n_0 \in \mathbb{N}\) such that for all \(n > m \geq n_0\), \(D(x_m,x_n,x) < \epsilon\).

Definition 2.3 [7]. A sequence \(\{x_n\}\) of points of a \(D\)-metric space \(X\) is said to be a \(D\)-Cauchy sequence if for an arbitrary \(\epsilon > 0\), there exists an \(n_0 \in \mathbb{N}\) such that for all \(p > n > m \geq n_0\), \(D(x_m,x_n,x_p) < \epsilon\).

Definition 2.4 [7]. A \(D\)-metric space \(X\) is a complete \(D\)-metric space if every \(D\)-Cauchy sequence \(\{x_n\}\) in \(X\) converges to a point \(x\) in \(X\).

Definition 2.5. A real-valued function \(f\) defined on a metric space \(X\) is said to be lower semicontinuous at a point \(t\) in \(X\) if \(\liminf_{x \to t} f(x) = \infty\) or \(\liminf_{x \to t} f(x) \geq f(t)\).

Definition 2.6. A real-valued function \(f\) defined on a metric space \(X\) is said to be upper semicontinuous at a point \(t\) in \(X\) if \(\limsup_{x \to t} f(x) = \infty\) or \(\limsup_{x \to t} f(x) \leq f(t)\).

Definition 2.7. Let \(x_0 \in X\) and \(\epsilon > 0\) be given. Then the open ball \(B(x_0,\epsilon)\) in \(X\) is defined by
\[
B(x_0,\epsilon) = \{y \in X \mid D(x_0,y,y) < \epsilon \text{ if } y = x_0, \sup_{z \in X} D(x_0,y,z) < \epsilon \text{ if } y \neq x_0\}. \tag{2.1}
\]
Then the collection of all open balls \(\{B(x,\epsilon) : x \in X\}\) defines the topology on \(X\) denoted by \(\tau\).

Lemma 2.8 [7]. The \(D\)-metric for \(X\) is a continuous function on \(X \times X \times X\) in the topology \(\tau\) on \(X\).

Lemma 2.9 [6]. If \(\varphi_1,\varphi_2 \in \Phi\), then there is some \(\varphi \in \Phi\) such that \(\max\{\varphi_1(t),\varphi_2(t)\} \leq \varphi(t)\) for all \(t > 0\).

Lemma 2.10. Let \((X,D)\) be a \(D\)-metric space. Let \(g : X \times X \to X\) be a mapping and let \(S,T : X \to X\) be mappings such that
\[
\max\{D(STx,TSy,g(STx,TSy)),D(TSy,STx,g(TSy,STx))\} \\
\leq \max\left\{\varphi_1\left[\frac{1}{2}(D(x,Sy,g(x,Sy)) + D(y,Tx,g(y,Tx)))\right],\varphi_2[D(x,Tx,g(x,Tx))],\varphi_3[D(y,Sy,g(y,Sy))],\varphi_4[D(x,y,g(x,y))]\right\} \tag{2.2}
\]
for all \(x,y \in X\), where \(\varphi_i \in \Phi\) \((i = 1,2,3,4)\),
\[
x = y \Rightarrow D(x,y,g(x,y)) = 0, \tag{2.3}
\]
and

$$\max \{D(x,z,g(x,z)),D(x,y,g(x,z)),D(y,z,g(x,z))\}$$

$$\leq D(x,y,g(x,y)) + D(y,z,g(y,z))$$

(2.4)

for all \(x, y, z \in X\). The sequence \(\{x_n\}\) is defined by \(x_0 \in X\), \(x_{2n+1} = Tx_{2n}\), and \(x_{2n+2} = Sx_{2n+1} + \varepsilon\) for every \(n \in \mathbb{N} \cup \{0\}\). Then

(i) for an arbitrary \(\varepsilon > 0\), there exists a positive integer \(L\) such that \(L \leq n < m\) implies

$$\max \{D(x_n,x_m,g(x_n,x_m)),D(x_m,x_n,g(x_m,x_n))\} \leq \varepsilon,$$

(ii) a sequence \(\{x_n\}_{n=0}^{\infty}\) is a \(D\)-Cauchy sequence.

Proof. Let \(M = \max \{D(x_0,x_1,g(x_0,x_1)),D(x_1,x_2,g(x_1,x_2)),D(x_2,x_1,g(x_2,x_1))\}\). Since all \(\varphi_i\) are nondecreasing functions by (2.2), (2.3), and (2.4),

$$\max \{D(x_2,x_3,g(x_2,x_3)),D(x_3,x_2,g(x_3,x_2))\}$$

$$= \max \{D(STx_0,TSx_1,g(STx_0,TSx_1)),D(TSx_1,STx_0,g(TSx_1,STx_0))\}$$

$$\leq \max \left\{ \varphi_1\left[\frac{1}{2} \left(D(x_0,Sx_1,g(x_0,Sx_1)) + D(x_1,Tx_0,g(x_1,Tx_0)) \right) \right], \varphi_2[D(x_0,Tx_0,g(x_0,Tx_0))], \varphi_3[D(x_1,Sx_1,g(x_1,Sx_1))], \varphi_4[D(x_0,x_1,g(x_0,x_1))] \right\},$$

$$\leq \max \{ \varphi_1(M), \varphi_2(M), \varphi_3(M), \varphi_4(M) \}$$

$$\leq \varphi(M),$$

where \(\varphi \in \Phi\). Such \(\varphi\) exists from an extended version of Lemma 2.9. Therefore, we have \(\max \{D(x_2,x_3,g(x_2,x_3)),D(x_3,x_2,g(x_3,x_2))\} \leq \varphi(M)\). Again, from (2.2), (2.3), and (2.4), we get

$$\max \{D(x_3,x_4,g(x_3,x_4)),D(x_4,x_3,g(x_4,x_3))\}$$

$$= \max \{D(TSx_1,STx_2,g(TSx_1,STx_2)),D(STx_2,TSx_1,g(STx_2,TSx_1))\}$$

$$\leq \max \left\{ \varphi_1\left[\frac{1}{2} \left(D(x_2,Sx_1,g(x_2,Sx_1)) + D(x_1,Tx_2,g(x_1,Tx_2)) \right) \right], \varphi_2[D(x_2,Tx_2,g(x_2,Tx_2))], \varphi_3[D(x_1,Sx_1,g(x_1,Sx_1))], \varphi_4[D(x_2,x_1,g(x_2,x_1))] \right\},$$

$$\leq \max \{ \varphi_1(M), \varphi_2[\varphi(M)], \varphi_3(M), \varphi_4(M) \}$$

$$\leq \varphi(M).$$

Using the obtained relations \(\max \{D(x_2,x_3,g(x_2,x_3)),D(x_3,x_2,g(x_3,x_2))\} \leq \varphi(M)\) and \(\max \{D(x_3,x_4,g(x_3,x_4)),D(x_4,x_3,g(x_4,x_3))\} \leq \varphi(M)\), from (2.2), (2.3), and (2.4),
we get

\[
\max \{ D(x_4, x_5, g(x_4, x_5)), D(x_5, x_4, g(x_5, x_4)) \} = \max \{ D(STx_2, TSx_3, g(STx_2, TSx_3)), D(TSx_3, STx_2, g(TSx_3, STx_2)) \}
\]
\[
\leq \max \left\{ \varphi_1 \left[\frac{1}{2} (D(x_2, SX_3, g(x_2, SX_3)) + D(x_3, TX_2, g(x_3, TX_2))) \right], \right.
\]
\[
\varphi_2 \left[D(x_2, TX_2, g(x_2, TX_2)) \right], \varphi_3 [D(x_3, SX_3, g(x_3, SX_3))], \right.
\]
\[
\varphi_4 \left[D(x_2, x_3, g(x_2, x_3)) \right] \bigg] \right\}
\]
\[
\leq \max \{ \varphi_1 [\varphi(M)], \varphi_2 [\varphi^2(M)], \varphi_3 [\varphi(M)], \varphi_4 [\varphi(M)] \}
\]
\[
\leq \varphi^2(M).
\]

Similarly, again from (2.2), (2.3), and (2.4), we get

\[
\max \{ D(x_5, x_6, g(x_5, x_6)), D(x_6, x_5, g(x_6, x_5)) \} = \max \{ D(TSx_3, STx_4, g(TSx_3, STx_4)), D(STx_4, TSx_3, g(STx_4, TSx_3)) \}
\]
\[
\leq \max \left\{ \varphi_1 \left[\frac{1}{2} (D(x_4, SX_3, g(x_4, SX_3)) + D(x_3, TX_4, g(x_3, TX_4))) \right], \right.
\]
\[
\varphi_2 \left[D(x_4, TX_4, g(x_4, TX_4)) \right], \varphi_3 [D(x_3, SX_3, g(x_3, SX_3))], \right.
\]
\[
\varphi_4 \left[D(x_4, x_3, g(x_4, x_3)) \right] \bigg] \right\}
\]
\[
\leq \max \{ \varphi_1 [\varphi^2(M)], \varphi_2 [\varphi^3(M)], \varphi_3 [\varphi(M)], \varphi_4 [\varphi(M)] \}
\]
\[
\leq \varphi^2(M).
\]

In general, by induction, we get

\[
\max \{ D(x_n, x_{n+1}, g(x_n, x_{n+1})), D(x_{n+1}, x_n, g(x_{n+1}, x_n)) \} \leq \varphi^{[n/2]}(M)
\]

for \(n \geq 2 \), where \([n/2]\) stands for the greatest integer not exceeding \(n/2 \). Since \(\varphi \in \Phi \), by Singh and Meade [13, Lemma 1], it follows that \(\varphi^n(M) \to 0 \) as \(n \to +\infty \) for every \(M > 0 \). Thus, we obtain

\[
\max \{ D(x_n, x_{n+1}, g(x_n, x_{n+1})), D(x_{n+1}, x_n, g(x_{n+1}, x_n)) \} \to 0 \quad \text{as} \quad n \to \infty.
\]

Suppose that (i) does not hold. Then there exists an \(\varepsilon > 0 \) such that for each \(i \in \mathbb{N} \), there exist positive integers \(n_i, m_i \), with \(i \leq n_i < m_i \), satisfying

\[
\varepsilon \leq \max \{ D(x_{n_i}, x_{m_i}, g(x_{n_i}, x_{m_i})), D(x_{m_i}, x_{n_i}, g(x_{m_i}, x_{n_i})) \},
\]
\[
\max \{ D(x_{n_i}, x_{m_{i-1}}, g(x_{n_i}, x_{m_{i-1}})), D(x_{m_{i-1}}, x_{n_i}, g(x_{m_{i-1}}, x_{n_i})) \} < \varepsilon \quad \text{for} \quad i = 1, 2, \ldots.
\]

Set

\[
\varepsilon_i = \max \{ D(x_{n_i}, x_{m_i}, g(x_{n_i}, x_{m_i})), D(x_{m_i}, x_{n_i}, g(x_{m_i}, x_{n_i})) \},
\]
\[
\rho_i = \max \{ D(x_{i}, x_{i+1}, g(x_{i}, x_{i+1})), D(x_{i+1}, x_{i}, g(x_{i+1}, x_{i})) \} \quad \text{for} \quad i = 1, 2, \ldots.
\]
Then we have
\[
\varepsilon \leq \varepsilon_i
\]
\[
= \max \left\{ D(x_{n_i}, x_{m_i}, g(x_{n_i}, x_{m_i})), D(x_{m_i}, x_{n_i}, g(x_{m_i}, x_{n_i})) \right\}
\]
\[
\leq \max \left\{ D(x_{n_i}, x_{m_i-1}, g(x_{n_i}, x_{m_i-1})), D(x_{m_i-1}, x_{n_i}, g(x_{m_i-1}, x_{n_i})) \right\} + \max \left\{ D(x_{m_i-1}, x_{m_i}, g(x_{m_i-1}, x_{m_i})), D(x_{m_i}, x_{m_i-1}, g(x_{m_i}, x_{m_i-1})) \right\}
\]
\[
< \varepsilon + \rho_{m_i-1}, \quad i = 1, 2, \ldots.
\]

Taking the limit as \(i \to +\infty \), we get \(\lim \varepsilon_i = \varepsilon \). On the other hand, by (2.2), (2.3), and (2.4),

\[
\varepsilon_i = \max \left\{ D(x_{n_i}, x_{m_i}, g(x_{n_i}, x_{m_i})), D(x_{m_i}, x_{n_i}, g(x_{m_i}, x_{n_i})) \right\}
\]
\[
\leq \max \left\{ D(x_{n_i}, x_{n_i+1}, g(x_{n_i}, x_{n_i+1})), D(x_{n_i+1}, x_{n_i}, g(x_{n_i+1}, x_{n_i})) \right\}
\]
\[
+ \max \left\{ D(x_{n_i+1}, x_{n_i+2}, g(x_{n_i+1}, x_{n_i+2})), D(x_{n_i+2}, x_{n_i+1}, g(x_{n_i+2}, x_{n_i+1})) \right\}
\]
\[
+ \max \left\{ D(x_{n_i+2}, x_{n_i+2}, g(x_{n_i+2}, x_{n_i+2})), D(x_{n_i+2}, x_{n_i+2}, g(x_{n_i+2}, x_{n_i+2})) \right\}
\]
\[
+ \max \left\{ D(x_{n_i+1}, x_{n_i+1}, g(x_{n_i+1}, x_{n_i+1})), D(x_{m_i+1}, x_{n_i+1}, g(x_{m_i+1}, x_{n_i+1})) \right\}
\]
\[
= \rho_{n_i} + \rho_{n_i+1} + \max \left\{ D(x_{m_i+2}, x_{m_i+2}, g(x_{m_i+2}, x_{m_i+2})), D(x_{m_i+2}, x_{m_i+2}, g(x_{m_i+2}, x_{m_i+2})) \right\}
\]
\[
+ \rho_{m_i+1} + \rho_{m_i}, \quad \text{for } i = 1, 2, \ldots.
\]

We will now analyze the term \(\max \left\{ D(x_{n_i+2}, x_{m_i+2}, g(x_{n_i+2}, x_{m_i+2})), D(x_{m_i+2}, x_{n_i+2}, g(x_{m_i+2}, x_{n_i+2})) \right\} \) based on the parity of the subscripts.

Case 1. \(n_i + 2 \) is even and \(m_i + 2 \) is odd. From (2.2), (2.3), and (2.4), we have

\[
\max \left\{ D(x_{n_i+2}, x_{m_i+2}, g(x_{n_i+2}, x_{m_i+2})), D(x_{m_i+2}, x_{n_i+2}, g(x_{m_i+2}, x_{n_i+2})) \right\}
\]
\[
= \max \left\{ D(STx_{n_i}, TSx_{m_i}, g(STx_{n_i}, TSx_{m_i})), D(TSx_{m_i}, STx_{n_i}, g(TSx_{m_i}, STx_{n_i})) \right\}
\]
\[
\leq \max \left\{ \varphi_1 \left[\frac{1}{2} D(x_{n_i}, Sx_{m_i}, g(x_{n_i}, Sx_{m_i})) + D(x_{m_i}, Tx_{n_i}, g(x_{m_i}, Tx_{n_i})) \right] \right\},
\]
\[
\varphi_2 \left[D(x_{n_i}, Tx_{n_i}, g(x_{n_i}, Tx_{n_i})) \right], \varphi_3 \left[D(x_{m_i}, Sx_{m_i}, g(x_{m_i}, Sx_{m_i})) \right],
\]
\[
\varphi_4 \left[D(x_{n_i}, x_{m_i}, g(x_{n_i}, x_{m_i})) \right] \right\}
\]
\[
\leq \max \left\{ \varphi_1 \left[\frac{1}{2} (\varepsilon_i + \rho_{m_i} + \varepsilon_i + \rho_{n_i}) \right], \varphi_2 (\rho_{n_i}), \varphi_3 (\rho_{m_i}), \varphi_4 (\varepsilon_i) \right\}
\]
\[
\leq \varphi (\varepsilon_i + \rho_{m_i} + \rho_{n_i}), \quad (2.15)
\]

Therefore, we have

\[
\max \left\{ D(x_{n_i+2}, x_{m_i+2}, g(x_{n_i+2}, x_{m_i+2})), D(x_{m_i+2}, x_{n_i+2}, g(x_{m_i+2}, x_{n_i+2})) \right\} \leq \varphi (k_i), \quad (2.16)
\]
where \(k_i = \varepsilon_i + \rho_{m_i} + \rho_{n_i}\). Substituting (2.16) into (2.14), taking the limit as \(i \rightarrow +\infty\), and using the right continuity of \(\varphi\), we get

\[
\varepsilon = \lim_{i \to +\infty} \varepsilon_i \leq \lim_{k_i \to +\infty} \varphi(k_i) = \varphi(\varepsilon) < \varepsilon,
\]

which is a contradiction.

Case 2. Both \(n_i + 2\) and \(m_i + 2\) are odd. Then, we have

\[
\max \{D(x_{n_i+2},x_{m_i+2},g(x_{n_i+2},x_{m_i+2})),D(x_{m_i+1},x_{n_i+2},g(x_{m_i+2},x_{n_i+2}))\}
\]

\[
\leq \max \{D(x_{n_i+2},x_{n_i+1},g(x_{n_i+2},x_{n_i+1})),D(x_{n_i+1},x_{n_i+2},g(x_{n_i+1},x_{n_i+2}))\}
\]

\[
+ \max \{D(x_{n_i+2},x_{n_i+2},g(x_{n_i+1},x_{n_i+2})),D(x_{m_i+2},x_{n_i+1},g(x_{m_i+2},x_{n_i+1}))\}
\]

\[
= \rho_{n_i+1} + \max \{D(x_{n_i+1},x_{m_i+2},g(x_{n_i+1},x_{m_i+2})),D(x_{m_i+2},x_{n_i+1},g(x_{m_i+2},x_{n_i+1}))\}.
\]

(2.18)

Since \(n_i + 1\) is even and \(m_i + 2\) is odd, from Case 1, we have

\[
\max \{D(x_{n_i+1},x_{m_i+2},g(x_{n_i+1},x_{m_i+2})),D(x_{m_i+1},x_{n_i+1},g(x_{m_i+2},x_{n_i+1}))\}
\]

\[
= \max \{D(STx_{n_i-1},x_{m_i+2},g(STx_{n_i-1},x_{m_i+2})),D(x_{m_i+1},x_{n_i+2},g(x_{m_i+2},x_{n_i+1}))\}
\]

\[
\leq \max \left\{ \frac{1}{2} \left[D(x_{n_i-1},x_{n_i+1},g(x_{n_i+1},x_{n_i})) + D(x_{n_i+1},x_{n_i+1},g(x_{n_i+1},x_{n_i+1})) \right], \varphi_2 \right\}
\]

\[
\leq \max \left\{ \frac{1}{2} (\rho_{n_i-1} + \varepsilon_i + \rho_{m_i} + \varepsilon_i), \varphi_2 (\rho_{n_i-1}), \varphi_3 (\rho_{m_i}), \varphi_4 (\rho_{n_i-1} + \varepsilon_i) \right\}
\]

\[
\leq \varphi(\varepsilon_i + \rho_{m_i} + \rho_{n_i-1}).
\]

(2.19)

Therefore, we get

\[
\max \{D(x_{n_i+1},x_{m_i+2},g(x_{n_i+1},x_{m_i+2})),D(x_{m_i+1},x_{n_i+1},g(x_{m_i+2},x_{n_i+1}))\} \leq \varphi(l_i),
\]

(2.20)

where \(l_i = \varepsilon_i + \rho_{m_i} + \rho_{n_i-1}\). Hence, substituting (2.20) into (2.18), then putting (2.18) into (2.14), and taking the limit as \(i \rightarrow +\infty\), we have

\[
\varepsilon = \lim_{i \to +\infty} \varepsilon_i \leq \lim_{l_i \to +\infty} \varphi(l_i) = \varphi(\varepsilon) < \varepsilon,
\]

(2.21)

which is a contradiction. In a similar manner, we get (2.17) and (2.21) for the cases in which \(n_i + 2\) and \(m_i + 2\) are both even, and \(n_i + 2\) is odd and \(m_i + 2\) is even. That is, all cases lead to a contradiction. Therefore (I) holds.
We claim that \(\{x_n\} \) is \(D \)-Cauchy. Let \(n, m, p \) \((n < m < p) \) be any positive integers. Then, by Definition 2.1 and (2.4),

\[
D(x_n, x_m, x_p) \leq D(x_n, x_m, g(x_n, x_m)) + D(x_n, x_p, g(x_n, x_m)) + D(x_m, x_p, g(x_n, x_m)) \\
\leq D(x_n, x_m, g(x_n, x_m)) + 2D(x_n, x_m, g(x_n, x_m)) + 2D(x_m, x_p, g(x_m, x_p)) \\
= 3D(x_n, x_m, g(x_n, x_m)) + 2D(x_m, x_p, g(x_m, x_p)).
\]

(2.22)

Since \(\lim_{n\to\infty} D(x_n, x_m, g(x_n, x_m)) = 0 \), we have \(\lim_{n\to\infty} D(x_n, x_m, x_p) = 0 \). Thus \(\{x_n\} \) is a \(D \)-Cauchy sequence.

\[\square \]

3. **Main results.** Now we will prove the following fixed point theorems for a complete \(D \)-metric space.

Theorem 3.1. Let \((X, D) \) be a complete \(D \)-metric space. Let \(g : X \times X \to X \) be a function and let \(S \) and \(T \) be self-maps on \(X \) satisfying (2.2), (2.3), and (2.4) of Lemma 2.10. For any sequences \(\{u_n\}, \{v_n\} \) in \(X \) such that \(\lim_{n\to\infty} u_n = \alpha \) and \(\lim_{n\to\infty} v_n = \beta \), \(\lim_{n\to\infty} D(u_n, v_n, g(u_n, v_n)) = D(\alpha, \beta, g(\alpha, \beta)) \) for some \(\alpha, \beta \) in \(X \).

If \(S \) or \(T \) is continuous, then \(S \) and \(T \) have a unique common fixed point.

Proof. Let the sequence \(\{x_n\} \) be defined by \(x_0 \in X, x_{2n+1} = Tx_{2n} \), and \(x_{2n+2} = Sx_{2n+1} \) for every \(n \in \mathbb{N} \cup \{0\} \). Then, by Lemma 2.10(ii), it follows that \(\{x_n\} \) is a \(D \)-Cauchy sequence. Since \(X \) is a complete \(D \)-metric space, \(\{x_n\} \) is convergent to a limit \(u \) in \(X \). Suppose that \(S \) is continuous. Then

\[
u = \lim_{n\to\infty} x_{2n+2} = \lim_{n\to\infty} Sx_{2n+1} = S\left(\lim_{n\to\infty} x_{2n+1}\right) = Su.
\]

(3.1)

This implies that \(u \) is a fixed point of \(S \). From (2.2), (2.3), and (2.4), we get \(D(u, Su, g(u, Su)) = 0 \) and

\[
D(u, Tu, g(u, Tu)) = D(u, TSu, g(u, TSu)) \\
\leq D(u, x_{2n+2}, g(u, x_{2n+2})) + D(STx_{2n}, TSu, g(STx_{2n}, TSu)) \\
\leq D(u, x_{2n+2}, g(u, x_{2n+2})) \\
+ \max \left\{ \frac{1}{2} [D(x_{2n}, Su, g(x_{2n}, Su)) + D(u, Tx_{2n}, g(u, Tx_{2n}))], \right. \\
\left. \frac{1}{2} [D(x_{2n}, Tx_{2n}, g(x_{2n}, Tx_{2n}))], \frac{1}{2} [D(u, Su, g(u, Su))], \right. \\
\left. \frac{1}{2} [D(x_{2n}, u, g(x_{2n}, u))]. \right\}
\]

(3.2)

Taking the limit when \(n \) tends to infinity, by hypothesis, we get \(D(u, Tu, g(u, Tu)) = 0 \). Thus, we have \(u = Su = Tu \). Therefore, \(u \) is the common fixed point of \(S \) and \(T \). The proof for \(T \) continuous is similar.
We will now show that u is unique. Suppose that v is also a common fixed point of S and T. Then, from (2.2), (2.3), and (2.4),

$$\max \{D(u, v, g(u, v)), D(v, u, g(v, u))\}$$

$$= \max \{D(STu, TSv, g(STu, TSv)), D(TSv, STu, g(TSv, STu))\}$$

$$\leq \max \left\{ \varphi_1 \left[\frac{1}{2} (D(u, Sv, g(u, Sv)) + D(v, Tu, g(v, Tu))) \right], \varphi_2 [D(u, Tu, g(u, Tu))], \varphi_3 [D(v, Sv, g(v, Sv))], \varphi_4 [D(u, v, g(u, v))] \right\}$$

$$= \max \left\{ \varphi_1 \left[\frac{1}{2} (D(u, v, g(u, v)) + D(v, u, g(v, u))) \right], \varphi_2 [D(u, u, g(u, u))], \varphi_3 [D(v, v, g(v, v))], \varphi_4 [D(u, v, g(u, v))] \right\}$$

$$\leq \varphi (\max \{D(u, v, g(u, v)), D(v, u, g(v, u))\})$$

(3.3)

We write $\max \{D(u, v, g(u, v)), D(v, u, g(v, u))\} \leq \varphi (\max \{D(u, v, g(u, v)), D(v, u, g(v, u))\})$, which implies that $\max \{D(u, v, g(u, v)), D(v, u, g(v, u))\} = 0$, that is, $u = v$. Therefore, the common fixed point of S and T is unique. \hfill \varnothing

Remark 3.2. Let X be a complete metric space with a metric d. If we take $D(x, y, z) = \max \{d(x, y), d(x, z), d(y, z)\}$ and $g(x, y) = x$ for all $x, y, z \in X$, then Theorem 3.1 is Ćirić’s [6, Theorem 2] which has extended a theorem of Fisher [8].

The following example shows that a D-metric is a proper extension of a metric d.

Example 3.3. Let d be a metric on \mathbb{R}. Define the function $\varphi : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ by $\varphi(x, y) = (x - y)^2$ for all $x, y \in \mathbb{R}$. Then, clearly, φ is not metric since $\varphi(2, 1/2) > \varphi(2, 1) + \varphi(1, 1/2)$. Let $G, H : \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be functions such that $G(x, y, z) = \max \{d(x, y), d(x, z), d(y, z)\}$ and $H(x, y, z) = \max \{\varphi(x, y), \varphi(x, z), \varphi(y, z)\}$ for all $x, y, z \in \mathbb{R}$. Then, clearly, G and H are D-metric for \mathbb{R}. But H is a D-metric that is a proper extension of the metric d. Therefore, a D-metric space is a proper extension of a metric space.

Corollary 3.4. Let (X, D) be a complete D-metric space. Let $g : X \times X \to X$ be a function and let S and T be self-maps on X satisfying

$$\max \{D(STx, TSy, g(STx, TSy)), D(TSx, STy, g(TSx, STy))\}$$

$$\leq c \cdot \max \left\{ \frac{1}{2} [D(x, Sy, g(x, Sy)) + D(y, Tx, g(y, Tx))], D(x, Tx, g(x, Tx)), D(y, Sy, g(y, Sy)), D(x, y, g(x, y)) \right\}$$

(3.4)

for all $x, y \in X$, where $x = y$ implies $D(x, y, g(x, y)) = 0$ and $\max \{D(x, z, g(x, z)), D(x, y, g(x, z)), D(y, z, g(x, z))\} \leq D(x, y, g(x, y)) + D(y, z, g(y, z))$ for all $x, y, z \in X$.

For any sequences \(\{u_n\} \) and \(\{v_n\} \) in \(X \) such that \(\lim_{n \to \infty} u_n = \alpha \) and \(\lim_{n \to \infty} v_n = \beta \), \(\lim_{n \to \infty} D(u_n, v_n, g(u_n, v_n)) = D(\alpha, \beta, g(\alpha, \beta)) \) for some \(\alpha, \beta \) in \(X \).

If \(S \) or \(T \) is continuous, then \(S \) and \(T \) have a unique common fixed point.

Proof. The proof follows by taking \(\varphi_i(t) = c \cdot t \) with \(0 < c < 1 \) \((i = 1, 2, 3, 4)\) in Theorem 3.1.

We will prove the following corollary using another condition instead of continuity in Theorem 3.1.

Corollary 3.5. Let \((X, D) \) be a complete \(D \)-metric space. Let \(g : X \times X \to X \) be a function, let \(S \) and \(T \) be self-maps on \(X \) satisfying (2.2), (2.3), and (2.4) of Lemma 2.10, and, for each \(u \in X \) with \(u \neq Su \) or \(u \neq Tu \), let

\[
\inf \{D(x, u, g(x, u)) + D(x, Sx, g(x, Sx)) + D(y, Ty, g(y, Ty)) : x, y \in X\} > 0.
\]

(3.5)

For any sequences \(\{a_n\} \) and \(\{b_n\} \) in \(X \) such that \(\lim_{n \to \infty} a_n = u \) and \(\lim_{n \to \infty} b_n = v \), the following conditions hold:

1. \(\lim_{n \to \infty} D(a_n, b_n, g(a_n, b_n)) = D(u, v, g(u, v)) \),
2. \(\lim_{n \to \infty} D(a_n, b_m, g(a_n, b_m)) = D(a_n, v, g(a_n, v)) \) for each \(n \in \mathbb{N} \),
3. \(\lim_{n \to \infty} D(b_m, a_n, g(b_m, a_n)) = D(v, a_n, g(v, a_n)) \) for each \(n \in \mathbb{N} \).

Then \(S \) and \(T \) have a unique common fixed point.

Proof. From Lemma 2.10(i) and (ii), the sequence \(\{x_n\} \) defined by \(x_0 \in X \), \(x_{2n+1} = Tx_{2n} \), and \(x_{2n+2} = Sx_{2n+1} \) for every \(x \in \mathbb{N} \cup \{0\} \) is a \(D \)-Cauchy sequence. Since \(X \) is a complete \(D \)-metric space, there exists \(u \in X \) such that \(\{x_n\} \) converges to \(u \). Then we have

\[
D(x_{2n+1}, x_{2m+2}, g(x_{2n+1}, x_{2m+2})) = D(TSx_{2n-1}, STx_{2m}, g(TSx_{2n-1}, STx_{2m}))
\]

\[
\leq \max \left\{ \varphi_1 \left[\frac{1}{2} (D(x_{2m}, Sx_{2n-1}, g(x_{2m}, Sx_{2n-1})) + D(x_{2n-1}, Tx_{2m}, g(x_{2n-1}, Tx_{2m}))) \right], \varphi_2[D(x_{2m}, Tx_{2n}, g(x_{2m}, Tx_{2n}))], \varphi_3[D(x_{2n-1}, Sx_{2n-1}, g(x_{2n-1}, Sx_{2n-1}))], \varphi_4[D(x_{2m}, x_{2n-1}, g(x_{2m}, x_{2n-1}))] \right\}
\]

\[
\leq \max \left\{ \varphi_1 \left[\frac{1}{2} (D(x_{2m}, x_{2n}, g(x_{2m}, x_{2n})) + D(x_{2n-1}, x_{2m+1}, g(x_{2n-1}, x_{2m+1}))) \right], \varphi_2[D(x_{2m}, x_{2m+1}, g(x_{2m}, x_{2m+1}))], \varphi_3[D(x_{2n-1}, x_{2n}, g(x_{2n-1}, x_{2n}))], \varphi_4[D(x_{2m}, x_{2n-1}, g(x_{2m}, x_{2n-1}))] \right\}.
\]

(3.6)

Thus, we obtain \(\lim_{n \to \infty} D(x_{2n+1}, u, g(x_{2n+1}, u)) = 0 \). Assume that \(u \neq Su \) or \(u \neq Tu \).
Then, by hypothesis, we have

\[
0 < \inf \left\{ D(x, u, g(x, u)) + D(x, Sx, g(x, Sx)) + D(y, Ty, g(y, Ty)) : x, y \in X \right\} \\
\leq \inf \left\{ D(x_{2n+1}, u, g(x_{2n+1}, u)) + D(x_{2n+1}, Sx_{2n+1}, g(x_{2n+1}, Sx_{2n+1})) \\
+ D(x_{2n+2}, Tx_{2n+2}, g(x_{2n+2}, Tx_{2n+2})) : n \in \mathbb{N} \right\} \\
= \inf \left\{ D(x_{2n+1}, u, g(x_{2n+1}, u)) + D(x_{2n+1}, x_{2n+2}, g(x_{2n+1}, x_{2n+2})) \\
+ D(x_{2n+2}, x_{2n+3}, g(x_{2n+2}, x_{2n+3})) : n \in \mathbb{N} \right\} \\
= 0.
\]

(3.7)

This is a contradiction. Therefore, we have \(u = Su = Tu \).

On the other hand, we can prove the existence of a unique common fixed point of \(S \) and \(T \) by a method similar to that of Theorem 3.1.

\[\square \]

ACKNOWLEDGMENT. This work was supported by Korea Research Foundation Grant (KRF-2003-015-C00039).

REFERENCES

Hee Soo Park: Department of Applied Mathematics, Changwon National University, Changwon 641-773, Korea
E-mail address: pheesoo@changwon.ac.kr

Jeong Sheok Ume: Department of Applied Mathematics, Changwon National University, Changwon 641-773, Korea
E-mail address: jsume@changwon.ac.kr
Mathematical Problems in Engineering

Special Issue on
Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>March 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>June 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>September 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Edson Denis Leonel, Department of Statistics, Applied Mathematics and Computing, Institute of Geosciences and Exact Sciences, State University of São Paulo at Rio Claro, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob’evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru

Hindawi Publishing Corporation
http://www.hindawi.com