SOME RESULTS ON CERTAIN SUBCLASSES OF ANALYTIC FUNCTIONS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTIONS AND HADAMARD PRODUCT

KHALIDA INAYAT NOOR
Mathematics Department
College of Science
King Saud University
Riyadh 11451, Saudi Arabia

(Received April 26, 1990 and in revised form March 22, 1991)

Abstract. By using a certain linear operator defined by a Hadamard product or convolution, several interesting subclasses of analytic functions in the unit disc are introduced and some unifying relationships between them are established. A variety of characterization results involving a certain functional and some general functions of hypergeometric type are investigated for these classes.

Key Words and Phrases: Analytic, Hadamard product, Hypergeometric functions univalent, starlike, convex, close-to-convex, Quasi-convex, Linear operator.

1980 Mathematics Subject Classification: 30A32, 30C45, 30A34.

1. INTRODUCTION. Let A denote the class of the function f of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_{n}z^{n}$$

which are analytic in the unit disc $E = \{z: |z| < 1\}$. A function $f \in A$ is said to be in the class $R(\beta)$ if, for $z \in E$ and $\beta > -1$,

$$\text{Re} \frac{zf'(z)}{f(z)} > -\beta$$

Also, a function $f \in A$ is said to belong to the class $V(\beta)$ if, for $z \in E$ and $\beta > -1$,

$$\text{Re} \left(\frac{(zf'(z))'}{f'(z)} \right) > -\beta .$$

We note that

$$f(z) \in R(\beta) \leftrightarrow zf'(z) \in V(\beta),$$

and $v(\beta) \subseteq R(\beta)$.

The classes $V(\beta)$ and $R(\beta)$ of analytic functions have been defined and studied in [9].

We define the following.

Let $f \in A$ and let $g \in R(\beta)$. Then $f \in T(\alpha, \beta)$ if, for $\alpha > -1$ and $z \in E$, $\text{Re} \frac{zf'(z)}{g(z)} > -\alpha$.

Also, let $f \in A$. Then $f \in T^{*}(\alpha, \beta)$ if, for $\alpha > -1$, $z \in E$ and $g \in V(\beta)$,
From (1.3) and (1.4), it is clear that

\[f \in T^*(\alpha, \beta) \iff zf' \in T(\alpha, \beta) \]

and

\[T^*(\alpha, \beta) \subseteq T(\alpha, \beta) \]

Let \(f_j(z) (j = 1, 2) \) in \(A \) be given by

\[f_j(z) = \sum_{n=0}^{\infty} a_{n+1} z^{n+1} \quad (a_{j_1} = 1) \]

Then the Hadamard product (or convolution) \(f_1 * f_2(z) \) of \(f_1(z) \) and \(f_2(z) \) is defined by

\[f_1 * f_2(z) = \sum_{n=0}^{\infty} a_{n+1} b_{n+1} z^{n+1} \quad (a_{j_1} = 1) \]

Let \(a_j (j = 1, \ldots, p) \) and \(b_j (j = 1, 2, \ldots, q) \) be complex numbers with \(\beta_j \neq 0, -1, -2, \ldots, j = 1, \ldots, q \).

Then the generalized hypergeometric function \(_pF_q \) is defined by

\[_pF_q(z) = \sum_{n=0}^{\infty} \frac{(\alpha_1) \ldots (\alpha_p)}{(\beta_1) \ldots (\beta_q)n!} z^n \quad (p \leq q + 1) \]

where \((\lambda)_n \) is the Pochhammer symbol defined by

\[(\lambda)_n = \begin{cases} 1 & \text{if } n = 0 \\ \lambda(\lambda + 1) \ldots (\lambda + n - 1) & \text{if } n \in \mathbb{N} = \{1, 2, 3, \ldots\} \end{cases} \]

We now define the function \(\phi(a, c, z) \) by

\[\phi(a, c, z) = \sum_{n=0}^{\infty} \frac{(a)_n}{(c)_n} z^{n+1} \quad (c = 0, -1, -2, \ldots, z \in E) \]

so that \(\phi(a, c) \) is an incomplete Beta function with

\[\phi(a, c, z) = z_2F_1(1, a; c, z) \]

Corresponding to the function \(\phi(a, c) \), Carlson and Shaffer [2] defined a linear operator \(L(a, c) \) on \(A \) by the convolution

\[L(a, c)f = \phi(a, c) * f \]

for \(f \in A \). Clearly, \(L(a, c) \) maps \(A \) onto itself, and \(L(c, a) \) is an inverse of \(L(a, c) \) provided that \(a \neq 0, -1, -2, \ldots \)

Furthermore, \(L(a, a) \) is the identity operator, and

\[R(\beta) = L(1, 2)V(\beta), \quad V(\beta) = L(2, 1)R(\beta) \]

Also

\[T(\alpha, \beta) = L(1, 2)T^*(\alpha, \beta), \quad T^*(\alpha, \beta) = L(2, 1)T(\alpha, \beta) \]

where \(\alpha > -1 \) and \(\beta > -1 \).

We can now define the classes of analytic function with which we shall be dealing.

Definition 1.1. A function \(f \in A \) is said to be in the class \(R(a, c; \beta) \) if \(L(a, c)f \) belongs to \(R(\beta) \) for \(\beta > -1 \), and \(f \in V(a, c; \beta) \) if, and only if, \(zf' \in R(a, c; \beta) \) for \(\beta > -1 \).

Similarly we have:
Definition 1.2. A function \(f \in A \) is said to be in the class \(T(a, c; \alpha, \beta) \) if \(L(a, c) f \in T(\alpha, \beta) \) for \(\alpha > -1 \) and \(\beta > -1 \). Further \(f \in T^*(a, c; \alpha, \beta) \) if, and only if, \(zf' \in T(a, c; \alpha, \beta) \) for \(\alpha > -1 \).

The following relations can easily be verified.

\[
V(a, c; \beta) = L(1, 2)R(a, c; \beta)
\]

\[
R(a, c, \beta) = L(2, 1)V(a, c; \beta)
\]

\[
V(\beta) = V(a, a; \beta) = L(1, 2)R(a, a; \beta)
\]

and

\[
R(\beta) = R(a, a; \beta) = L(2, 1)V(a, a; \beta)
\]

Also

\[
T^*(a, c; \alpha, \beta) = L(1, 2)T(a, c; \alpha, \beta)
\]

\[
T(a, c; \alpha, \beta) = L(2, 1)T^*(a, c; \alpha, \beta)
\]

\[
T^*(\alpha, \beta) = T^*(a, a; \alpha, \beta) = L(1, 2)T(a, a; \alpha, \beta)
\]

and

\[
T(\alpha, \beta) = T(a, a; \alpha, \beta) = L(2, 1)T^*(a, a; \alpha, \beta)
\]

We shall now connect these classes with the univalent functions. A single-valued function \(f \) is said to be \textit{univalent} in a domain \(D \) if it never takes on the same value twice. By \(S, K, S^*, C \) and \(C^* \) denote the subclasses of \(A \) which are respectively univalent, close-to-convex, starlike, convex and quasi-convex in \(E \). In [8], Robertson defined the subclasses of \(C \) and \(S^* \) by using the order of the class as follows. A function \(f \in S \) is called a \textit{convex function} of order \(\beta_i, 0 \leq \beta_i < 1 \), if and only if \(Re \left(\frac{zf' \alpha z}{z \beta} \right) > \beta_i, z \in E \). We denote this class as \(C(\beta_i) \). Also a function \(f \in S \) is called \textit{starlike function} of order \(\beta_i, 0 \leq \beta_i < 1 \) if and only if \(Re \left(\frac{zf' \alpha z}{z \beta} \right) > \beta_i, z \in E \). We call this class \(S^*(\beta_i) \).

Libera [3] introduced the terminology of order and type together in the class \(K(\alpha_i, \beta_i) \) of close-to-convex functions. A function \(f \in A \) is said to be close-to-convex of order \(\alpha_i \) type \(\beta_i, 0 \leq \alpha_i < 1; 0 \leq \beta_i < 1 \), if and only if there exists a function \(g \in S^*(\beta_i) \) such that \(Re \left(\frac{zf' \alpha z}{z \beta} \right) > \alpha_i, z \in E \). Further \(f \in C^*(\alpha_i, \beta_i) \Leftrightarrow zf' \in K(\alpha_i, \beta_i) \) we refer to [7].

Indeed from the above definitions of the various subclasses of the various subclasses of \(A \), we deduce readily the following:

\[
S^*(\beta_i) \subset S^* \subset R(\beta) \subset A,
\]

\[
C(\beta_i) \subset C \subset V(\beta) \subset R(\beta) \subset A
\]

and

\[
C^*(\alpha_i, \beta_i) \subset C^* \subset T^*(\alpha, \beta) \subset T(\alpha, \beta) \subset A,
\]

\[
K(\alpha_i, \beta_i) \subset K \subset T(\alpha, \beta) \subset A,
\]

where

\[
0 \leq \alpha_i < 1, \quad 0 \leq \beta_i < 1 \quad \text{and} \quad -1 < -\alpha_i \leq \alpha; \quad -1 < -\beta_i \leq \beta.
\]
2. MAIN RESULTS

We first state certain results which will be needed in proving our main theorems.

Lemma 2.1. [6] Let $\phi(u, v)$ be the complex function, $\phi : D \to C$, $D \subset C \times C$ (C-complex plane) and let $u = u_1 + iu_2$, $v = v_1 + iv_2$. Suppose that the function ϕ satisfies the conditions:

(i) $\phi(u, v)$ is continuous in D;
(ii) $(1, 0) \in D$ and $\text{Re}\{\phi(0, 1)\} > 0$;
(iii) $\text{Re}\{\phi(iu_2, v_1)\} < 0$ for all $(iu_2, v_1) \in D$ and such that $v_1 < (1 + u_2^2)/2$.

Let $h(z) = 1 + c_1 z + \ldots$ be analytic in E, such that $(h(z), z h'(z)) \in E$ for all $z \in E$. If $\text{Re}\{\phi(h(z), z h'(z))\} > 0 (z \in E)$, then $\text{Re}(h(z)) > 0$ for $z \in E$.

Let $l(f)$ denote a functional defined by

$$I_f(t) = \int_0^t t^{-1} f(t) \, dt$$

for $f \in A$ and for a real number $\lambda > 1$. The functional $I_f(t)$, when $\lambda \in N$, was studied by Bernardi [1], and in particular, $I_f(t)$ was considered earlier by Libera [4] and Livingston [5]. We note that $I_f(t)$ is a particular solution of the ordinary first order differential equation

$$t g'(t) + \lambda g(t) (t + 1)$$

at the point $z = t$. Also by comparing (1.9) and (2.1), we have $I_f(t) = L(\lambda + 2, \lambda + 1)$. For our next results we refer to [9].

Theorem 2.1. Let $g \in R(a, c; \lambda)$ and let, for $\lambda \geq \beta > -1$, $l(g)$ be defined by (2.1). The $l(g)$ is also in the class $R(a, c; \beta)$.

We shall now prove the following.

Theorem 2.2. Let $f \in T(a, c; \alpha, \beta)$ and let, for $\lambda \geq \alpha, \beta > -1$, $l(f)$ be defined by (2.1). Then $l(f) \in T(a, c; \alpha, \beta)$.

Proof: Since $f \in T(a, c; \alpha, \beta)$, there exists $g \in R(a, c; \beta)$ such that

$$\text{Re}\left\{\frac{z[L(a, c) f(z)]'}{L(a, c) g(z)}\right\} > -\alpha$$

Now, from Theorem 2.1, we know that $l(g) \in R(a, c; \beta)$. Let

$$z[L(a, c) f(z)]' = (1 + a) h(z) - \alpha,$$ \hspace{1cm} (2.2)

where

$$h(z) = 1 + c_1 z + c_2 z^2 + \ldots$$

Note that

$$z[L(a, c) f(z)]' = (\lambda + 1) L(a, c) f(z) - \lambda L(a, c) l(f)$$

which readily yields

$$z[L(a, c) f(z)]'' = (\lambda + 1) z[L(a, c) f(z)]' - (\lambda + 1) z[L(a, c) f(z)]'$$

Now, differentiating both sides of (2.2) logarithmically and using (2.3) and (2.4), we obtain

$$\frac{(\lambda + 1) z[L(a, c) f(z)]'}{z[L(a, c) f(z)]'} - \frac{\lambda + 1) L(a, c) f(z)}{L(a, c) l(f)} = \frac{(1 + a) h(z)}{(1 + a) h(z) - \alpha}$$
or, equivalently,
\[
\frac{(\lambda + 1) L(a, c) g(z)}{z L(a, c) \gamma(z)} \frac{z L(a, c) f(z)}{L(a, c) g(z)} - \frac{z L(a, c) \Lambda(f)}{L(a, c) \Lambda(g)} \frac{(1 + \alpha) h(z)}{L(a, c) \Lambda} = (1 + \alpha) h(z) \frac{(1 + \alpha) h(z) - \alpha}{L(a, c) \Lambda - \alpha}
\]

(2.5)

After simplification, and taking
\[
\frac{z L(a, c) \Lambda(g)}{L(a, c) \Lambda} = (1 + \beta) H(z) - \beta,
\]
where \(\text{Re} H(z) = h_1 > 0\) and \(\beta > -1\), we have, from (2.5),
\[
\frac{z L(a, c) f(z)}{L(a, c) g(z)} = (1 + \alpha) h(z) - \alpha + \frac{(1 + \alpha) h(z)}{(1 + \beta) H(z) - \beta + \lambda}
\]
or
\[
\frac{z L(a, c) f(z)}{L(a, c) g(z)} + \alpha = (1 + \alpha) h(z) + \frac{(1 + \alpha) h(z)}{(1 + \beta) H(z) - \beta + \lambda}
\]

(2.6)

We form the function \(\phi(u, v)\) by taking
\[
u = h(z) \quad \text{and} \quad v = z h'(z)
\]
in (2.6) as
\[
\phi(u, v) = (1 + \alpha) u + \frac{(1 + \alpha) v}{(1 + \beta) H(z) - \beta + \lambda}.
\]

(2.7)

It is clear that the function \(\phi(u, v)\) defined by (2.7) satisfies conditions (i) and (ii) of Lemma 2.1 easily. To verify condition (iii), we proceed as follows.
\[
\text{Re} \phi(iu_1, v_1) = \frac{(1 + \alpha) v_1 \{(1 + \beta) h_1 - \beta + \lambda\}}{[(1 + \beta) h_1 - \beta + \lambda]^2 + [(1 + \beta) h_2]^2}
\]
where \(H(z) = h_1 + ih_2\), \(h_1\) and \(h_2\) being the functions of \(x\) and \(y\) and \(\text{Re} H(z) = h_1 > 0\).

By putting \(v_1 = -\frac{1}{2} (1 + u_2^2)\), we obtain
\[
\text{Re} \phi(iu_2, v_1) = \frac{(1 + da)(1 + u_2^2) \{(1 + \beta) h_1 - \beta + \lambda\}}{[(1 + \beta) h_1 - \beta + \lambda]^2 + [(1 + \beta) h_2]^2} \leq 0
\]

Hence, by Lemma 2.1, \(\text{Re} H(z) > 0\) and this implies that \(I_0(f) \in T(a, c; \alpha, \beta)\). This proves our theorem.

Corollary 2.1. Let \(f \in T(a, c; \alpha, \beta)\). Then, for \(\lambda \geq \alpha, \beta > -1\), \(L(a, c) I_0(f) \in K\)

Proof: From Theorem 2.2, we clearly see that \(L(a, c) I_0(f) \in K\). The second assertion follows easily from the fact that
\[
L(a, c) I_0(f) = I_0(L(a, c) f(z))
\]

Next we have:

Theorem 2.3. Let \(f \in T^*(a, c; \alpha, \beta)\). Then for \(\lambda \geq \alpha, \beta > -1\), \(I_0(f)\) also belongs to \(T^*(a, c; \alpha, \beta)\).

Proof: Since
\[
f \in T^*(a, c; \alpha, \beta) \iff zf' \in T(a, c; \alpha, \beta),
\]
we observe, using Theorem 2.2, that
\[
I_0(zf') \in T(a, c; \alpha, \beta).
\]
and this implies that
\[z(I, f) \in T^*(a, c; \alpha, \beta). \]

Hence \(I, (f) \in T^*(a, c; \alpha, \beta) \). This completes the proof.

Corollary 2.2. Let \(f \in T^*(a, c; \alpha, \beta) \). Then, for \(\lambda \geq \alpha, \beta > -1 \). \(I, (L(a, c)f) \in C^* \) and \(I, (L(a, c)f(z)) \in C^* \).

REFERENCES

Special Issue on
Singular Boundary Value Problems for Ordinary Differential Equations

Call for Papers

The purpose of this special issue is to study singular boundary value problems arising in differential equations and dynamical systems. Survey articles dealing with interactions between different fields, applications, and approaches of boundary value problems and singular problems are welcome.

This Special Issue will focus on any type of singularities that appear in the study of boundary value problems. It includes:

- Theory and methods
- Mathematical Models
- Engineering applications
- Biological applications
- Medical Applications
- Finance applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/bvp/guidelines.html. Authors should follow the Boundary Value Problems manuscript format described at the journal site http://www.hindawi.com/journals/bvp/. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of €200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>May 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>August 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>November 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Juan J. Nieto, Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain; juanjose.nieto.roig@usc.es

Guest Editor

Donal O’Regan, Department of Mathematics, National University of Ireland, Galway, Ireland; donal.oregan@nuigalway.ie