Research Article
Dynamics of a Class of Higher Order Difference Equations
Bratislav D. Iričanin

Received 16 October 2007; Revised 11 November 2007; Accepted 29 November 2007

We prove that all positive solutions of the autonomous difference equation $x_n = \frac{\alpha x_{n-k}}{1 + x_{n-k} + f(x_{n-1}, \ldots, x_{n-m})}$, $n \in \mathbb{N}_0$, where $k, m \in \mathbb{N}$, and f is a continuous function satisfying the condition $\beta \min\{u_1, \ldots, u_m\} \leq f(u_1, \ldots, u_m) \leq \beta \max\{u_1, \ldots, u_m\}$ for some $\beta \in (0, 1)$, converge to the positive equilibrium $x = (\alpha - 1)/(\beta + 1)$ if $\alpha > 1$.

Copyright © 2007 Bratislav D. Iričanin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In this paper, we investigate the global stability of positive solutions of the following autonomous difference equation:

$$x_n = \frac{\alpha x_{n-k}}{1 + x_{n-k} + f(x_{n-1}, \ldots, x_{n-m})}, \quad n \in \mathbb{N}_0 := \{0, 1, 2, \ldots\},$$

(1.1)

where $k, m \in \mathbb{N}$, and f is a continuous function satisfying the condition

$$\beta \min\{u_1, \ldots, u_m\} \leq f(u_1, \ldots, u_m) \leq \beta \max\{u_1, \ldots, u_m\}$$

(1.2)

for some $\beta \in (0, 1)$ (the case $\beta = 0$ is not of some interest since in the case equation it turned as Riccati’ one).

Note that in a view of relations (1.2), $x = (\alpha - 1)/(\beta + 1)$ is a unique positive equilibrium of (1.1), if $\alpha > 1$.

Further, note that the behaviour of positive solutions of (1.1) for the case $\alpha \in (0, 1)$ is quite simple. Namely, in this case, we have $x_n \leq \alpha x_{n-k}$, so that the sequences $(x_{n+r})_{r \in \mathbb{N}}$, $r \in \{0, 1, \ldots, k-1\}$ converge to zero, and consequently, the sequence x_n does. The case
\[\alpha = 1 \] is slightly complicated. In this case, the sequences \((x_{k+l})_{l \in \mathbb{N}}, \quad r \in \{0, 1, \ldots, k - 1\}\) are still convergent, as positive and nonincreasing. If we replace \(n\) in (1.1) by \(kl, l \in \mathbb{N}\), and then let \(l \to \infty\), we obtain

\[\phi_0 = \frac{\phi_0}{1 + \phi_0 + f(\phi_1, \ldots, \phi_m)}, \quad (1.3) \]

where \(\phi_i := \lim_{i \to \infty} x_{kl+i}, \quad i \in \{0, 1, \ldots, k - 1\}\). Without loss of generality, we may assume that \(\phi_0 \neq 0\). From (1.3), we have that \(\phi_0 + f(\phi_1, \ldots, \phi_m) = 0\), which implies \(\phi_0 = 0\), a contradiction. Hence, every positive solution of (1.1) converges to zero, also in this case.

Equation (1.1) for the case \(\alpha \in (0, 1)\) is a particular case of the difference equation

\[x_n = g(x_{n-1}, x_{n-s}), \quad (1.4) \]

where the function \(g\) satisfies the condition

\[g(u_1, \ldots, u_s) \leq \max \{u_1, \ldots, u_s\}. \quad (1.5) \]

Equation (1.4), whose function \(g\) satisfies condition (1.5) or the following condition:

\[\lim_{x \to \infty} \frac{g(x, \ldots, x)}{x} = 1, \quad (1.6) \]

has been extensively studied by many authors (see, e.g., [9, 14–21, 25]).

In the proof of the result, we use the method of so-called “frame” sequences, that is, a discrete analog of the method of frame curves, commonly used in the theory of differential equations. This method and closely related methods have been used in the literature for many times; see, for example, [21, 1–5, 7, 10, 11, 22–24] and the related references therein. Our motivation stems from [10–12]. Recently, there has been a great interest in studying nonlinear difference equations and systems, in particular those which model some real-life situations in population biology and ecology (see, e.g., [18, 20, 21, 25, 10, 6, 8, 13] and the references cited therein).

2. The global stability of (1.1)

We prove the main result of this paper in this section. Before this, we need a lemma.

Lemma 2.1. Assume that \(\alpha > 1, \beta \in (0, 1), \epsilon \in (0, (\alpha - 1)(1 - \beta)/(1 + \beta))\), and that \((m_n)_{n \in \mathbb{N}}\) and \((M_n)_{n \in \mathbb{N}}\) are sequences defined as follows:

\[m_n = \alpha - 1 - \beta M_{n-1} - \frac{\epsilon}{2^{n-1}}, \quad M_n = \alpha - 1 - \beta m_n + \frac{\epsilon}{2^{n-1}}, \quad (2.1) \]

for \(n \geq 2\), with initial values

\[m_1 = (\alpha - 1) - \beta(\alpha - 1 + \epsilon) - \epsilon, \quad M_1 = \alpha - 1 + \epsilon. \quad (2.2) \]

Then

\[\lim_{n \to \infty} m_n = \lim_{n \to \infty} M_n = \frac{\alpha - 1}{1 + \beta}. \quad (2.3) \]
Proof. From (2.1) we obtain the following linear first-order difference equation:

\[M_n = \beta^2 M_{n-1} + (\alpha - 1)(1 - \beta) + (2\beta + 1) \frac{\varepsilon}{2^{n-1}}, \quad n \geq 2, \]

whence, the general solution is

\[M_n = \beta^2 n - 2 M_1 + (\alpha - 1)(1 - \beta) \beta^2 n - 2 - 1 + (2 \beta + 1) \varepsilon \sum_{j=0}^{n-2} (2\beta^2)^j. \]

Letting \(n \to \infty \) in (2.5), using the assumption \(\beta \in (0, 1) \) and Stoltz theorem, it follows that

\[\lim_{n \to \infty} M_n = \frac{\alpha - 1}{1 + \beta}. \]

From this and (2.1), it easily follows that \(\lim_{n \to \infty} m_n = (\alpha - 1)/(1 + \beta) \) too, as claimed.

Now, we are able to formulate and to prove our main result.

Theorem 2.2. Assume that \(\alpha > 1 \), and \(f \) is a continuous function satisfying condition (1.2) for some \(\beta \in (0, 1) \). Then, every positive solution of (1.1) converges to the positive equilibrium \(x = (\alpha - 1)/(\beta + 1) \).

Proof. From (1.1), we have that

\[x_n = \frac{\alpha x_{n-k}}{1 + x_{n-k} + f(x_{n-1}, \ldots, x_{n-m})} \leq \frac{\alpha x_{n-k}}{1 + x_{n-k}}, \quad n \in \mathbb{N}. \]

Assume that \(u_n \) is a solution of the following difference equation:

\[u_n = \frac{\alpha u_{n-k}}{1 + u_{n-k}}, \]

with initial values \(u_0 = x_0, \ldots, u_{-k} = x_{-k} \). It is clear that (2.7) can be reduced into \(k \)-independent Riccati equations of the form \(z_n = \alpha z_{n-1}/(1 + z_{n-1}) \). It is well known that for \(\alpha > 1 \), there is finite limit \(\lim_{n \to \infty} z_n \) (which is equal to \(\alpha - 1 \)). From this and since in the light of the monotonicity of the function \(f(x) = \alpha x/(1 + x) \), we have that \(x_n \leq u_n \) for \(n \geq -k \). By letting \(n \to \infty \), it follows that

\[S = \limsup_{n \to \infty} x_n \leq \alpha - 1 = \lim_{n \to \infty} u_n. \]

From (2.8), we have that for every \(\varepsilon \in (0, (\alpha - 1)(1 - \beta)/(1 + \beta)) \),

\[x_n \leq \alpha - 1 + \varepsilon, \]

for \(n \geq n_0 \). From (1.1), condition (1.2), and relation (2.9), it follows that

\[\frac{\alpha x_{n-k}}{1 + x_{n-k} + \beta(\alpha - 1 + \varepsilon)} \leq \frac{\alpha x_{n-k}}{1 + x_{n-k} + f(x_{n-1}, \ldots, x_{n-m})} = x_n \]

for every \(n \geq n_0 + m \). Assume that \((y_n) \) is a solution of the following difference equation:

\[y_n = \frac{\alpha y_{n-k}}{1 + y_{n-k} + \beta(\alpha - 1 + \varepsilon)} \]
with initial values $y_{n_0} = x_{n_0}, \ldots, y_{n_0+k-1} = x_{n_0+k-1}$. Then, since the function $g(x) = \alpha x/(1 + \beta(\alpha - 1 + \varepsilon) + x)$ is increasing on the interval $(0, \infty)$, it is easy to see by the induction that $y_n \leq x_n$ for $n \geq n_0$, and that
\[
\lim_{n \to \infty} y_n = (\alpha - 1) - \beta(\alpha - 1 + \varepsilon). \tag{2.12}
\]
Hence, we obtain that
\[
0 < (\alpha - 1) - \beta(\alpha - 1 + \varepsilon) \leq \liminf_{n \to \infty} x_n = I. \tag{2.13}
\]
In this way, we formed two frame sequences (y_n) and (u_n) such that $y_n \leq x_n \leq u_n$ for $n \geq n_0 + m$.

Now, let $\varepsilon \in (0, (\alpha - 1)(1 - \beta)/(1 + \beta))$ and sequences $(m_n)_{n \in \mathbb{N}}$ and $(M_n)_{n \in \mathbb{N}}$ be defined by (2.1) with (2.2).

Then we have
\[
0 < m_1 \leq I \leq S \leq M_1. \tag{2.14}
\]
On the other hand, similar to (2.6)–(2.13), for each $t \in \mathbb{N} \setminus \{1\}$ fixed, we can form the sequences $(y_n^{(t)})$ and $(u_n^{(t)})$ defined by
\[
u_n^{(t)} = \frac{\alpha u_n^{(t)}}{1 + u_n^{(t)} + \beta m_{t-1}}, \quad y_n^{(t)} = \frac{\alpha y_n^{(t)}}{1 + y_n^{(t)} + \beta M_{t}}, \tag{2.15}
\]
and easily show that
\[
\lim_{n \to \infty} u_n^{(t)} = \alpha - 1 - \beta m_{t-1}, \quad \lim_{n \to \infty} y_n^{(t)} = \alpha - 1 - \beta M_t, \quad \alpha - 1 - \beta M_t - \frac{\varepsilon}{2^{t-1}} < y_n^{(t)} \leq u_n^{(t)} < \alpha - 1 - \beta m_{t-1} + \frac{\varepsilon}{2^{t-1}}, \quad n \geq n_t. \tag{2.16}
\]
From this and Lemma 2.1, it follows that
\[
m_t \leq I \leq S \leq M_t \tag{2.17}
\]
for every $t \in \mathbb{N}$. Letting $t \to \infty$ in relations (2.17), the result follows. \qed

By Theorem 2.2 and the change of variables $x_n = y_n/c$, we obtain the following corollary.

Corollary 2.3. Assume that $k, m \in \mathbb{N}$, $\alpha_j, j \in \{1, \ldots, m\}$, are nonnegative numbers such that $\sum_{j=1}^{m} \alpha_j = 1$, $\alpha > 1$, $c > 0$, and $\beta \in (0, c)$. Then, every positive solution of the difference equation
\[
x_n = \frac{\alpha x_{n-k}}{1 + cx_{n-k} + \beta \sum_{j=1}^{m} \alpha_j x_{n-j}}, \quad n \in \mathbb{N}_0, \tag{2.18}
\]
converges to the positive equilibrium $x = (\alpha - 1)/(\beta + c)$.

In the following example, we show that the function f need not be a linear one.
Example 2.4. Let

\[f(u_1, \ldots, u_m) = \sqrt{\frac{\sum_{j=1}^{m} u_j^a}{m}}, \quad (2.19) \]

where \(a > 0 \); then this function satisfies conditions of Theorem 2.2. Hence, every positive solution of the difference equation

\[x_n = \frac{\alpha x_{n-k}}{1 + x_{n-k} + \beta \sqrt{\left(x_{n-1}^a + x_{n-2}^a + \cdots + x_{n-m}^a\right)/m}}, \quad (2.20) \]

converges to the positive equilibrium \(\bar{x} = (\alpha - 1)/(\beta + 1) \).

Acknowledgments

The author would like to thank the referee for many valuable comments which improved the presentation of the paper. The research was partly supported by the Serbian Ministry of Science, through the Mathematical Institute of SASA, Project no. 144013.

References

[9] G. L. Karakostas and S. Stević, “Slowly varying solutions of the difference equation \(x_{n+1} f(x_n, \ldots, x_{n-k+1}) + g(n, x_n, \ldots, x_{n-k+1}) \),” *Journal of Difference Equations and Applications*, vol. 10, no. 3, pp. 249–255, 2004.

Bratislav D. Iričanin: Faculty of Electrical Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11000 Beograd, Serbia
Email address: iricanin@galeb.etf.bg.ac.yu
Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from “Qualitative Theory of Differential Equations,” allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the Mathematical Problems in Engineering aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>December 1, 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research, King’s College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk