The Boussinesq equations describe the motion of an incompressible viscous fluid subject to convective heat transfer. Decay rates of derivatives of solutions of the three-dimensional Cauchy problem for a Boussinesq system are studied in this work.

1. Introduction

In this work we show some theoretical results about decay rates of strong solutions of the three-dimensional Cauchy problem for Boussinesq equations, described by the following partial differential equation problem (see [6]):

\[
\begin{align*}
\frac{\partial u}{\partial t} - \nu \Delta u + u \cdot \nabla u + \nabla \pi &= \theta f \quad \text{in } (0, T) \times \mathbb{R}^3, \\
\text{div } u &= 0 \quad \text{in } (0, T) \times \mathbb{R}^3, \\
\frac{\partial \theta}{\partial t} - \chi \Delta \theta + u \cdot \nabla \theta &= 0 \quad \text{in } (0, T) \times \mathbb{R}^3, \\
u(0, x) &= a(x) \quad \text{in } \mathbb{R}^3, \\
\theta(0, x) &= b(x) \quad \text{in } \mathbb{R}^3,
\end{align*}
\]

(1.1)

where the unknown are \(u, \theta, \pi\) which denote, respectively, the velocity field, the scalar temperature and the scalar pressure. Data are the positive constants \(\nu, \chi\), respectively, the viscosity and the thermal conductivity coefficients and the function \(f\) the external force field, and \(a(x), b(x)\), respectively, represent the initial velocity and initial temperature.

The main objective of this work is to obtain a decay rate of derivatives for the strong solutions to the Cauchy problem (1.1). For this, we will consider the usual Lebesgue spaces \(L^p(\mathbb{R}^3)\) with the usual norms \(|\cdot|_p\). We will denote \(L^p_0(\mathbb{R}^3)\) the closure of \(C^\infty_0(\mathbb{R}^3) = \{v \in C^\infty_0; \text{div } v = 0\}\) in \(L^p(\mathbb{R}^3)\). We will denote too by \(L^p(0, T; L^q(\mathbb{R}^3))\) the Banach space, classes of functions defined a.e. in \([0, T]\) on \(L^q(\mathbb{R}^3)\), that are \(L^p\)-integrable in the sense of Bochner. For more details see [1, 3].

We observe that this model of fluids includes as a particular case the classical Navier-Stokes equations, which has been thoroughly studied (see, e.g., [7, 8]). Rojas Medar and...
Lorca obtained results of uniqueness and existence of the local solutions and regularity of solutions for Boussinesq equations [9, 10].

Results of decay rates of strong solution were obtained by Cheng He and Ling Hsião [4]. In this paper, we are interested to get similar results for Boussinesq equations.

2. Results of decay rates

The main objective of this work is to establish the decay rates of derivatives about time variable and spaces variables for the strong solutions to the Cauchy problem of the Boussinesq equations (1.1). For this, we will consider a sequence of Cauchy problems for the linearized Boussinesq equations

\[
\begin{align*}
\frac{\partial u^k}{\partial t} - \nu \Delta u^k + (u^{k-1} \cdot \nabla) u^{k-1} + \nabla \pi^k &= \theta^{k-1} f & \text{on } (0, T) \times \mathbb{R}^3, \\
\text{div} u^k &= 0 & \text{on } (0, T) \times \mathbb{R}^3, \\
\frac{\partial \theta^k}{\partial t} - \chi \Delta \theta^k + u^{k-1} \cdot \nabla \theta^{k-1} &= 0 & \text{on } (0, T) \times \mathbb{R}^3, \\
\theta^k(0, x) &= b^k(x) & \text{on } \mathbb{R}^3,
\end{align*}
\]

for \(k \geq 1\), where \(a^k \in C^\infty_{0, u}(\mathbb{R}^3)\) and \(b^k \in C^\infty_u(\mathbb{R}^3)\) such that

\[
a^k \rightarrow a \quad \text{in } L^3(\mathbb{R}^3) \text{ strongly}, \\
b^k \rightarrow b \quad \text{in } L^3(\mathbb{R}^3) \text{ strongly},
\]

with \(|a^k|_3 \leq |a|_3\) and \(|b^k|_3 \leq |b|_3\). The first term, \((u^0, \pi^0, \theta^0)\), of this sequence is solution of the trivial Cauchy problem:

\[
\begin{align*}
\frac{\partial u^0}{\partial t} - \nu \Delta u^0 + \nabla \pi^0 &= 0 & \text{on } (0, T) \times \mathbb{R}^3, \\
\text{div} u^0 &= 0 & \text{on } (0, T) \times \mathbb{R}^3, \\
\frac{\partial \theta^0}{\partial t} - \chi \Delta \theta^0 &= 0 & \text{on } (0, T) \times \mathbb{R}^3, \\
\theta^0(0, x) &= b^0(x) & \text{on } \mathbb{R}^3.
\end{align*}
\]

Let \(\Gamma_y(t, x; s, y) = (4\nu \pi t)^{-3/2} \exp(-|x|^2/4\nu t)\) be a fundamental solution of the heat equation in \(\mathbb{R}^3\) (with viscosity coefficient \(\nu\)). Then, the solution of the linearized Boussinesq
system (2.1) can be written as follows:

\[
\begin{align*}
 u^k_t(t,x) &= \int_{\mathbb{R}^3} \Gamma(t,x;0,y) a^k(y) dy \\
 &- \int_0^t \int_{\mathbb{R}^3} \Gamma(t,x,y) \sum_{j=1}^3 u^{k-1}_j(s,y) \frac{\partial u^{k-1}_i(s,y)}{\partial x_j} dy ds \\
 &- \int_0^t \int_{\mathbb{R}^3} \Gamma(t,x,y) \frac{\partial \pi^k(s,y)}{\partial x_i} dy ds \\
 &+ \int_0^t \int_{\mathbb{R}^3} \Gamma(t,x,y) \theta^{k-1}(s,y) f_i(s,y) dy ds,
\end{align*}
\]

(2.4)

\[
\begin{align*}
 \theta^k(t,x) &= \int_{\mathbb{R}^3} \Gamma(t,x;0,y) b^k(y) dy \\
 &- \int_0^t \int_{\mathbb{R}^3} \Gamma(t,x,y) \sum_{j=1}^3 u^{k-1}_j(s,y) \frac{\partial \theta^{k-1}(s,y)}{\partial x_j} dy ds.
\end{align*}
\]

(2.5)

The convergence for the above method can be seen in [2, 7].

Definition 2.1. A couple \((u, \theta)\) is called strong solution for the system (1.1), if

\[
\begin{align*}
 u &\in L^p(0, \infty; L^2(\mathbb{R}^3)) \cap L^\infty(0, \infty; L^3(\mathbb{R}^3)), \\
 \theta &\in L^p(0, \infty; L^q(\mathbb{R}^3)) \cap L^\infty(0, \infty; L^3(\mathbb{R}^3)),
\end{align*}
\]

(2.6)

for some \(p > 2\) and \(q > 3\), and satisfying

\[
\begin{align*}
 \int_0^\infty \int_{\mathbb{R}^3} \left(u \cdot \frac{d\varphi}{dt} + u \cdot \Delta \varphi + (u \cdot \nabla \varphi) u \right) dx dt &= -\int_{\mathbb{R}^3} a \cdot \varphi(0,x) dx + \int_0^\infty \int_{\mathbb{R}^3} \theta f \cdot \varphi dx dt \\
 \int_0^\infty \int_{\mathbb{R}^3} \left(\theta \frac{d\psi}{dt} + \theta \Delta \psi + (u \cdot \nabla \psi) \theta \right) dx dt &= -\int_{\mathbb{R}^3} b \psi(0,x) dx
\end{align*}
\]

(2.7)

for all \(\varphi \in C_0^\infty(0, \infty; C_0^\infty(\mathbb{R}^3))\) and

\[
\int_0^\infty \int_{\mathbb{R}^3} \left(\theta \frac{d\psi}{dt} + \theta \Delta \psi + (u \cdot \nabla \psi) \theta \right) dx dt = -\int_{\mathbb{R}^3} b \psi(0,x) dx
\]

(2.8)

for all \(\psi \in C_0^\infty(0, \infty; C_0^\infty(\mathbb{R}^3)).\)

Lemma 2.2. For the pressure \(\pi^k\) the following estimate holds:

\[
| \nabla \pi^k |_r \leq C \left| (u^{k-1} \cdot \nabla) u^{k-1} + \theta^{k-1} f \right|_r
\]

(2.9)

for \(1 < r < \infty, k > 0.\)
Lemma 2.3. Let \(a \in L^3(\mathbb{R}^3), \ b \in L^3(\mathbb{R}^3), \ |f(t)|_q \leq C_0 t^{-1+3/2q} (|a|_3 + |b|_3), \ |\nabla f(t)|_q \leq C_0 t^{-3/2+3/2q} (|a|_3 + |b|_3), \) where the constant \(C_0 \) is independent of \(t \) and \(q. \) If \(C^* C_0 (|a|_3 + |b|_3) \leq 1 \) for some constant \(C^*, \) then

\[
t^{1/2-3/2q} \left(|u^k(t)|_q + |\theta^k(t)|_q \right) \leq C C_0 (|a|_3 + |b|_3),
\]

\[
t^{1-3/2q} \left(|\nabla u^k(t)|_q + |\nabla \theta^k(t)|_q \right) \leq C C_0 (|a|_3 + |b|_3)
\]

for \(3 \leq q \leq \infty, \ t \geq 0 \) and \(k \geq 0. \)

Proof. We put

\[
I^k = t^{1/2-3/2q} \left(|u^k(t)|_q + |\theta^k(t)|_q \right)
\]

\[
J^k = t^{1-3/2q} \left(|\nabla u^k(t)|_q + |\nabla \theta^k(t)|_q \right).
\]

We will assume by inductive hypotheses that the estimates (2.10) are true for \(k - 1. \) By the Young inequality for convolution, we can estimate the terms of (2.4) as follows:

\[
\left| \int_{\mathbb{R}^3} \Gamma_y(t,x;0,y)a^k_i(y)dy \right|_q \leq (4\pi t)^{-3/2} \left(\int_{\mathbb{R}^3} e^{-|x-y|^2/4yt} dy \right)^{1/p} |a^k_i|_3,
\]

\[
\leq C t^{-1/2+3/2q} |a^k_i|_3,
\]

where \(1/p + 1/3 = 1 + 1/q. \) Again, by the Young inequality we obtain

\[
\left| \int_0^t \int_{\mathbb{R}^3} \Gamma_y(t,x;0,y) \frac{3}{\partial x} (s,y) \frac{\partial u_i^{k-1}(s,y)dy}{\partial x} ds \right|_q \leq C \int_0^t (t-s)^{-3/2(1/2-1/q)} |u^{k-1}|_4 \nabla u^{k-1} |_4 ds
\]

\[
\leq CC_0^{3/2} (|a|_3 + |b|_3)^2 t^{-1/2+3/2q},
\]

where \(1/p + 1/2 = 1 + 1/q. \) Now, using (2.9) we have

\[
\left| \int_0^t \int_{\mathbb{R}^3} \Gamma_y(t,x;0,y) \frac{\partial u_i^{k-1}(s,y)dy}{\partial x} ds \right|_q \leq CC_0^{2} (|a|_3 + |b|_3)^2 t^{-1/2+3/2q},
\]

\[
\left| \int_0^t \int_{\mathbb{R}^3} \Gamma_y(t,x;0,y) \theta^{k-1}(s,y) f_i(s,y)dy ds \right|_q \leq CC_0^{2} t^{-1/2+3/2q} (|a|_3 + |b|_3)^2.
\]

Moreover

\[
|u^k(t)|_q \leq Ct^{-1/2+3/2q} \left(C_0 (|a|_3 + |b|_3) + C_0^2 (|a|_3 + |b|_3)^2 \right).
\]

Analogously, we can obtain the estimate for \(|\theta^k(t)|_q. \) Now, differentiating (2.4) and using the fact

\[
\left| \frac{\partial}{\partial x^l} \Gamma_y(t,x;0,y) \right| \leq C(t-s)^{-2} e^{-\lambda |x-y|^2/4(t-s)}
\]

(2.16)
for $i = 1, 2, 3$ and some constant $\lambda > 0$, follows

$$
\left| \frac{\partial}{\partial x_i} \int_{\mathbb{R}^3} \Gamma_v(t, x; 0, y) a_i^k(y) dy \right|_q \leq Ct^{-1+3/2q} |a|_3. \quad (2.17)
$$

Analogously, we obtain

$$
\left| \frac{\partial}{\partial x_i} \int_{t_0}^t \int_{\mathbb{R}^3} \Gamma_v(t, x; s, y) \sum_{j=1}^3 u_j^{k-1}(s, y) \frac{\partial u_j^{k-1}}{\partial x_i}(s, y) dy ds \right|_q
$$

$$
\leq CC_0^2(|a|_3 + |b|_3)^2 t^{-1+3/2q}, \quad (2.18)
$$

$$
\left| \frac{\partial}{\partial x_i} \int_{t_0}^t \int_{\mathbb{R}^3} \Gamma_v(t, x; s, y) \frac{\partial \theta^{k-1}}{\partial x_i}(s, y) dy ds \right|_q
$$

$$
\leq CC_0^2(|a|_3 + |b|_3)^2 t^{-1+3/2q} \int_{t_0}^1 (1 - w)^{-1/2-3/2r} w^{-3/2+3/2(1/r+1/q)} dw, \quad (2.19)
$$

where $r > 3$ and $1/r + 1/q > 1/3$, to obtain the convergence of the last integral in (2.19). Finally, we obtain

$$
\left| \frac{\partial}{\partial x_i} \int_{t_0}^t \int_{\mathbb{R}^3} \Gamma_v(t, x; s, y) \theta^{k-1} f_i dy ds \right|_q \leq C \int_{t_0}^t (t - s)^{-1/2+3/2(1/q-1/l)} |\theta^{k-1} f_i|_4 ds. \quad (2.20)
$$

Without difficulty we can obtain for the equation of the temperature

$$
J_q^k \leq C_0(|a|_3 + |b|_3) + CC_0^2(|a|_3 + |b|_3)^2 \leq 2C_0(|a|_3 + |b|_3). \quad (2.21)
$$

For $q = \infty$ we can obtain analogously as before

$$
I_{\infty}^k \leq C(|a|_3 + |b|_3) + Ct^{1/2} \int_{t_0}^t (t - s)^{-3/4} \left| \nabla u^{k-1} \right|_4 + \left| \nabla \theta^{k-1} \right|_4 ds
$$

$$
+ Ct^{1/2} \int_{t_0}^t (t - s)^{-3/4} \left| \theta^{k-1} \right|_4 |f|_4 ds \leq C(|a|_3 + |b|_3) + CC_0^2(|a|_3 + |b|_3)^2. \quad (2.22)
$$

Similarly, we obtain the estimative for J_{∞}^k. \hfill \Box

Lemma 2.4. Let $a \in L^3_0(\mathbb{R}^3)$, $b \in L^3(\mathbb{R}^3)$ and $|f|_q \leq C_0 t^{-1+3/2q}(|a|_3 + |b|_3)$, $|\nabla f|_q \leq C_0 t^{-3/2+3/2q} \left(|a|_3 + |b|_3 \right)$. If $C^* C_0(|a|_3 + |b|_3) \leq 1$ for some constant C^*, then for $3 \leq q \leq \infty$, the following estimate is true uniformly in k:

$$
t^{3/2-3/2q} \sum_{l,j=1}^3 \left(\left| \frac{\partial^2 u^k}{\partial x_l \partial x_j} \right|_q + \left| \frac{\partial^2 \theta^k}{\partial x_l \partial x_j} \right|_q \right) \leq 2C_0(|a|_3 + |b|_3). \quad (2.23)
$$
The estimation for the terms that involve analogously for temperature.

Proof. The identity (2.4) can be written as follows:

\[
 u^i_t(t,x) = \int_{\mathbb{R}^3} \Gamma_y(t,x;0,y) a^i_t(y) dy - \int_{t/2}^{t} \int_{\mathbb{R}^3} \Gamma_y(t,x;s,y) \left(\sum_{j=1}^{3} u^{k-1}_j(s,y) \frac{\partial u^{k-1}_i}{\partial x_j}(s,y) + \frac{\partial \pi^k}{\partial x_i}(s,y) - \theta^{k-1}(s,y) f_i(s,y) \right) dy ds
\]

\[
 - \int_{t/2}^{t} \int_{\mathbb{R}^3} \Gamma_y(t,x;s,y) \left(\sum_{j=1}^{3} u^{k-1}_j(s,y) \frac{\partial u^{k-1}_i}{\partial x_j}(s,y) + \frac{\partial \pi^k}{\partial x_i}(s,y) - \theta^{k-1}(s,y) f_i(s,y) \right) dy ds
\]

(2.24)

analogously for temperature.

We will make the case \(l = j \) (for the case \(l \neq j \) the argument is analogous). By the Young inequality we obtain

\[
 \left| \frac{\partial^2}{\partial x_i^2} \int_{\mathbb{R}^3} \Gamma_y(t,x;0,y) a^i_t(y) dy \right|_q \leq C \frac{1}{t} \left| \int_{\mathbb{R}^3} \left(\Gamma_y(t,x;0,y) a^i_t(y) + \frac{(x_1 - y_1)^2}{t^2} \Gamma_y(t,x;0,y) a^i_t(y) \right) dy \right|_q \leq Ct^{-3/2+3/2d} |a|_3.
\]

By analogous computations, we have

\[
 \left| \frac{\partial^2}{\partial x_i^2} \int_{t/2}^{t} \int_{\mathbb{R}^3} \Gamma_y(t,x;s,y) \sum_{j=1}^{3} u^{k-1}_j(s,y) \frac{\partial u^{k-1}_i}{\partial x_j}(s,y) dy \right|_q \leq CC_0^2(|a|_3 + |b|_3)^2 t^{-3/2+3/2q} \int_0^{1/2} (1 - w)^{-7/4+3/2q} w^{-3/4} dw.
\]

The estimation for the terms that involve \(\int_{0}^{t/2} \) are obtained analogously. By other side

\[
 \left| \frac{\partial^2}{\partial x_i^2} \int_{t/2}^{t} \int_{\mathbb{R}^3} \Gamma_y(t,x;s,y) \sum_{j=1}^{3} u^{k-1}_j(s,y) \frac{\partial u^{k-1}_i}{\partial x_j}(s,y) dy ds \right|_q \left| \frac{\partial^2}{\partial x_i^2} \int_{t/2}^{t} \int_{\mathbb{R}^3} \Gamma_y(t,x;s,y) \sum_{j=1}^{3} u^{k-1}_j(s,y) \frac{\partial u^{k-1}_i}{\partial x_j}(s,y) dy ds \right|_q \leq CC_0^2(|a|_3 + |b|_3)^2 t^{-3/2+3/2q} \int_0^{1/2} (1 - w)^{-1/2} w^{-2+3/2q} dw
\]

\[
 + CC_0(|a|_3 + |b|_3) \int_{1/2}^{1} (1 - w)^{-1/2} w^{-2+3/2q} dw
\]

\[
 \times \sup_{s \in [t/2,t]} \left| s^{-3/2+3/24} \frac{\partial^2 u^{k-1}}{\partial x^2_i}(s) \right|_q.
\]

(2.27)
Analogously

\[
\left| \frac{\partial^2}{\partial x_i^2} \int_{t/2}^t \int_{\mathbb{R}^3} \Gamma(t,x;s,y) \frac{\partial \pi}{\partial x_i} dy \, ds \right|_q \leq C \int_{t/2}^t (t-s)^{-2} \left(\left| \frac{\partial}{\partial x_i} ((u^{k-1} \cdot \nabla) u^{k-1}) \right|_q + \left| \frac{\partial \theta^{k-1} f}{\partial x_i} \right|_q \right) \, ds
\]

(2.28)

and, finally,

\[
\left| \frac{\partial^2}{\partial x_i^2} \int_{t/2}^t \int_{\mathbb{R}^3} \Gamma(t,x;s,y) \theta^{k-1} f_i dy \, ds \right|_q \leq CC_0^2 (|a|_3 + |b|_3)^2 t^{-3/2+3/2q} \int_{1/2}^t (1-w)^{-1/2} w^{-2+3/2q} dw.
\]

(2.29)

The proof of Lemma 2.4 is a consequence from the above estimative.

\[\square\]

Lemma 2.5. Let \(a \in L^3_0(\mathbb{R}^3) \), \(b \in L^3(\mathbb{R}^3) \) and \(|f|_q \leq C_0 t^{-1+3/2q} (|a|_3 + |b|_3) \), \(|\nabla f|_q \leq C_0 t^{-3/2+3/2q} (|a|_3 + |b|_3) \). If \(M(|a|_3 + |b|_3) \leq 1 \) for some constant \(M \), then for \(3 \leq q \leq \infty \), the following estimative are verified uniformly in \(k \):

\[
t^{3/2-3/2q} |\nabla \pi^k|_q \leq C (|a|_3 + |b|_3)^2,
\]

(2.30)

\[
t^{3/2-3/2q} \left(\left| \frac{\partial u^k}{\partial t} \right|_q + \left| \frac{\partial \theta^k}{\partial t} \right|_q \right) \leq C (|a|_3 + |b|_3) + C (|a|_3 + |b|_3)^2.
\]

(2.31)

Proof. The proof is a consequence of Lemmas 2.2, 2.3, and 2.4, and the following facts

\[
\frac{\partial u^k}{\partial t} = \nu \Delta u^k - (u^{k-1} \cdot \nabla) u^{k-1} - \nabla \pi^k + \theta^{k-1} f,
\]

(2.32)

\[
\frac{\partial \theta^k}{\partial t} = \chi \Delta \theta^k - u^{k-1} \cdot \nabla \theta^{k-1}.
\]

The main result in this paper is the following.

Theorem 2.6. Let \(a \in L^3_0(\mathbb{R}^3) \), \(b \in L^3(\mathbb{R}^3) \) and \(|f|_q \leq C_0 t^{-1+3/2q} (|a|_3 + |b|_3) \), \(|\nabla f|_q \leq C_0 t^{-3/2+3/2q} (|a|_3 + |b|_3) \). Then, there exists a positive constant \(\varepsilon \) such that, if \((|a|_3 + |b|_3) \leq \varepsilon \), there exists a unique solution \((u, \theta)\) for (1.1), which satisfy:

\[
i^{1/2-3/2q} u \in BC([0, \infty); L^q(\mathbb{R}^3)),
\]

\[
i^{1/2-3/2q} \theta \in BC([0, \infty); L^q(\mathbb{R}^3)),
\]

\[
i^{1-3/2q} |\nabla u| \in BC([0, \infty); L^q(\mathbb{R}^3)),
\]

\[
i^{1/2-3/2q} |\nabla \theta| \in BC([0, \infty); L^q(\mathbb{R}^3)),
\]

(2.33)
for $3 \leq q \leq \infty$ and moreover

\[
t^{3/2-3/2q} \sum_{i,j=1}^{3} \left| \frac{\partial^2 u}{\partial x_j \partial x_i} \right| \in BC([0, \infty); L^q(\mathbb{R}^3)),
\]
\[
t^{3/2-3/2q} \sum_{i,j=1}^{3} \left| \frac{\partial^2 \theta}{\partial x_j \partial x_i} \right| \in BC([0, \infty); L^q(\mathbb{R}^3)),
\]
\[
t^{3/2-3/2q} |\nabla \pi| \in BC([0, \infty); L^q(\mathbb{R}^3)),
\]
\[
t^{3/2-3/2q} \frac{\partial u}{\partial t} \in BC([0, \infty); L^q(\mathbb{R}^3)),
\]

for $3 \leq q \leq \infty$.

Proof. Using Lemma 2.3 with $q = 3$, we obtain

\[
|u_k|_3 + |\theta_k|_3 \leq C(|a|_3 + |b|_3),
\]
\[
|\nabla u_k|_3 + |\nabla \theta_k|_3 \leq C t^{-1/2}(|a|_3 + |b|_3)
\]

then, for $1 < p < 2$ it is easy to show

\[
\begin{align*}
 u^k &\in L^\infty(0, \infty; L^3(\mathbb{R}^3)), \\
 \theta^k &\in L^\infty(0, \infty; L^3(\mathbb{R}^3)), \\
 \nabla u^k &\in L^p_{\text{loc}}(0, \infty; L^3(\mathbb{R}^3)), \\
 \nabla \theta^k &\in L^p_{\text{loc}}(0, \infty; L^3(\mathbb{R}^3)).
\end{align*}
\]

Let q and q^* such that $1/q + 1/q^* = 1$ and we consider the following estimative:

\[
\begin{align*}
 \sup_{|v|_{\mathbb{W}_{q^*}^{1,q^*}} = 1} |\langle \triangle u^k, v \rangle| &\leq \sup_{|v|_{\mathbb{W}_{q^*}^{1,q^*}} = 1} |\nabla u^k|_q |\nabla v|_{q^*} \leq |\nabla u^k|_q, \\
 \sup_{|v|_{\mathbb{W}_{q^*}^{1,q^*}} = 1} |\langle (u^k - 1) \cdot \nabla \rangle u^{k-1}, v \rangle| &\leq |u^{k-1}|^2_{q^*}, \\
 \sup_{|v|_{\mathbb{W}_{q^*}^{1,q^*}} = 1} |\langle \nabla \pi^k, v \rangle| &\leq |\pi^k|_q.
\end{align*}
\]

Now, using Hölder and Sobolev inequalities, we have

\[
\begin{align*}
 \sup_{|v|_{\mathbb{W}_{q^*}^{1,q^*}} = 1} |\langle \theta^{k-1} f, v \rangle| &\leq C \sup_{|v|_{\mathbb{W}_{q^*}^{1,q^*}} = 1} |\theta^{k-1} f|_{3q/(q+3)} |\nabla v|_{q^*} \\
 &= C |\theta^{k-1} f|_{3q/(q+3)}.
\end{align*}
\]

Thus, by using Lemma 2.4 together with Sobolev and Hölder inequalities, we obtain

\[
\begin{align*}
 \left| \frac{\partial u^k}{\partial t} \right|_{\mathbb{W}_{q^*}^{1,q^*}} &\leq |\nabla u^k|_q + C |u^{k-1}|_{3q} |\nabla u^{k-1}|_q + C |\theta^{k-1}|_{3q^*} f|_q,
\end{align*}
\]
consequently,

\[\left\| \frac{\partial u_k}{\partial t} \right\|_{W^{-1,q}} \leq Ct^{-1+3/2q}. \]

(2.40)

Analogously the following inequality can be proved for the temperature \(\theta^k \)

\[\left\| \frac{\partial \theta^k}{\partial t} \right\|_{W^{-1,q}(\mathbb{R}^3)} \leq Ct^{-1+3/2q}. \]

(2.41)

Therefore, for \(1 < r < 2q/(2q - 3) \), we have

\[\frac{\partial u^k}{\partial t} \in L^r_{\text{loc}}(0, \infty; W^{-1,q}(\mathbb{R}^3)), \]

\[\frac{\partial \theta^k}{\partial t} \in L^r_{\text{loc}}(0, \infty; W^{-1,q}(\mathbb{R}^3)). \]

(2.42)

By using the compact embedding of \(W^{1,3}(\mathbb{R}^3) \) on \(L^3_{\text{loc}}(\mathbb{R}^3) \) and the Compactness Theorem in [11, Cap. 3], we obtain that there exists \((u, \theta) \) such that

\[u^k \rightharpoonup u \quad \text{in} \quad L^2_{\text{loc}}(0, \infty; L^3_{\text{loc}}(\mathbb{R}^3)) \quad \text{strongly}, \]

\[\theta^k \rightharpoonup \theta \quad \text{in} \quad L^2_{\text{loc}}(0, \infty; L^3_{\text{loc}}(\mathbb{R}^3)) \quad \text{strongly}. \]

(2.43)

Now, using the standard arguments, it is easily to show that \((u, \theta) \) is a unique solution of (1.1) (see [5]).

\[\square \]

Acknowledgments

The authors has been partially supported by D.G.E.S. and M.C. y T. (Spain), Project BFM2003-06446. M.A. Rojas-Medar is partially supported by CNPq-Brazil, Grant 301354/03-0.

References

Boussinesq equations

Francisco Guillén González: Universidad de Sevilla, Facultad de Matemáticas, 41012 Sevilla, Spain
E-mail address: guillen@us.es

Márcio Santos da Rocha: DM-CCE-UEL, Londrina-PR, Brazil
E-mail address: marcio@uel.br

Marko Rojas Medar: DMA-IMECC-UNICAMP, CP 6065, 13083-970, Campinas-SP, Brazil
E-mail address: marko@ime.unicamp.br
Mathematical Problems in Engineering

Special Issue on
Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>December 1, 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Edson Denis Leonel, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob’evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru