THE STRUCTURE OF SOME CLASSES OF 3-DIMENSIONAL NORMAL ALMOST CONTACT METRIC MANIFOLDS

UDAY CHAND DE AND ABUL KALAM MONDAL

Abstract. The object of the present paper is to study ξ–projectively flat and ϕ–projectively flat 3-dimensional normal almost contact metric manifolds. An illustrative example is given.

1. Introduction

Let M be an almost contact manifold and (ϕ, ξ, η) its almost contact structure. This means, M is an odd-dimensional differentiable manifold and ϕ, ξ, η are tensor fields on M of types (1, 1), (1, 0), (0, 1) respectively, such that

\[\phi^2 = -I + \eta \otimes \xi, \quad \phi \xi = 0, \quad \eta(\xi) = 1, \quad \eta \circ \phi = 0. \] (1)

Let R be the real line and t a coordinate on R. Define an almost complex structure J on $M \times R$ by

\[J(X, \frac{df}{dt}) = (\phi X - \lambda \xi, \eta(X) \frac{df}{dt}), \]

where the pair $(X, \frac{df}{dt})$ denotes a tangent vector to $M \times R$, f is a smooth function on $M \times R$, X and $\frac{df}{dt}$ being tangent to M and R respectively.

M with the structure (ϕ, ξ, η) is said to be normal if the structure J is integrable [2], [3]. The necessary and sufficient condition for (ϕ, ξ, η) to be normal is

\[[\phi, \phi] + 2d \eta \otimes \xi = 0, \]

where the pair $[\phi, \phi]$ is the Nijenhuis tensor of ϕ defined by

\[[\phi, \phi](X, Y) = [\phi X, \phi Y] + \phi^2[X, Y] - \phi[\phi X, Y] - \phi[X, \phi Y], \]

for any $X, Y \in \mathcal{T}(M)$. We say that the form η has rank $r = 2s$ if $(d\eta)^s \neq 0$, and $\eta \wedge (d\eta)^s = 0$, and has rank $r = 2s + 1$ if $\eta \wedge (d\eta)^s = 0$ and $(d\eta)^{s+1} = 0$. We also say that r is the rank of the structure (ϕ, ξ, η).

2000 Mathematics Subject Classification: 53c15, 53c40.
Key words and phrases: normal almost contact metric manifolds, ξ–projectively flat, ϕ–projectively flat, Einstein manifold.
A Riemannian metric g on M satisfying the condition

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y),$$

(1.2)

for any $X, Y \in T(M)$ is said to be compatible with the structure (ϕ, ξ, η). If g is such a metric, then the quadruple (ϕ, ξ, η, g) is called an almost contact metric (shortly a.c.m.) structure on M and M is an (a.c.m.) manifold. On such a manifold we also have $\eta(X) = g(X, \xi)$, for any $X \in T(M)$ and we can always define the 2-form Φ by $\Phi(X, Y) = g(X, \phi Y)$, where $X, Y \in T(M)$.

It is no hard to see that if $\dim M = 3$, then two Riemannian metrics g and g' are compatible with the same almost contact structure (ϕ, ξ, η) on M if and only if $g' = g + (1 - \sigma)\eta \otimes \eta$, for a certain positive function σ on M.

A normal (a.c.m.) structure (ϕ, ξ, η, g) satisfying additionally the condition $d\eta = \Phi$ is called Sasakian. Of course, any such structure on M has rank 3. Also a normal almost contact metric structure satisfying the condition $d\Phi = 0$ is said to be quasi-Sasakian [4]. Contact metric manifolds have been studied by several authors ([1], [7], [12]).

Also if we consider \tilde{M} be a complex n-dimensional Kaehler manifold and M a real hypersurface of \tilde{M}. We denote by \tilde{g} and \tilde{J} a Kaehler metric tensor and its Hermitian Structure tensor, respectively. For any vector field X tangent to M, we put

$$JX = \phi X + \eta(X)N, \quad JN = -\xi,$$

where ϕ is a $(1,1)$-type tensor field, η is a 1-form and ξ is a unit vector field on M. The induced Riemannian metric on M is denoted by g. Then by the properties of (\tilde{g}, \tilde{J}), we see that the structure (ϕ, ξ, η, g) is an almost contact metric structure on M. Real hypersurfaces of a complex manifold have been studied by ([15], [18]) and many others.

In a recent paper [13], Olszak studied the curvature properties of normal almost contact manifold of dimension 3 with several examples. De, Yildiz and Funda [9] studied locally ϕ-symmetric normal (a.c.m.) manifolds of dimension 3. Also De and Kalam [8] recently characterized certain curvature conditions on 3-dimensional normal almost contact manifolds. Since at each point $P \in M$, the tangent space $T_P(M)$ can be decomposed into the direct sum $T_P(M) = \phi(T_P(M)) \oplus \{\xi\}$, where $\{\xi_P\}$ is the 1-dimensional linear subspace of $T_P(M)$ generated by ξ_P, the conformal curvature tensor C is a map $C : T_P(M) \times T_P(M) \times T_P(M) \to \phi(T_P(M)) \oplus \{\xi\}$, $P \in M$. One has the following well known particular cases: (1) the projection of the image of C in $\phi(T_P(M))$ is zero; (2) the
projection of the image of \(C \) in \(\{ \xi, \phi \} \) is zero; and (3) the projection of the image of \(C \left| \phi(T_p(M)) \right| \) in

THE STRUCTURE OF SOME CLASSES OF 3-DIMENSIONAL NORMAL ALMOST........

\(\phi(T_p(M)) \) is zero. An (a.c.m.) manifold satisfying the cases (1), (2) and (3) is said to be conformally symmetric [19], \(\xi \) – conformally flat [20] and \(\phi \) – conformally flat [6] respectively.

Apart from conformal curvature tensor, the projective curvature tensor is another important tensor from the differential geometric point of view. Let \(M \) be a \(n \)–dimensional Riemannian manifold. If there exist one-to-one correspondence between each coordinate neighborhood of \(M \) and a domain in Euclidian space such that any geodesic of the Riemannian manifold corresponds to a straight line in the Euclidean space, then \(M \) is said to be locally projectively flat. For \(n \geq 3 \), \(M \) is locally projectively flat if and only if the well known projective curvature tensor \(P \) vanishes. Here \(P \) is defined by [11]

\[
P(X, Y)Z = R(X, Y)Z - \frac{1}{n - 1} \{ S(Y, Z)X - S(X, Z)Y \},
\]

for \(X, Y, Z \in T(M) \), where \(R \) is the curvature tensor and \(S \) is the Ricci tensor. In fact, \(M \) is projectively flat (that is \(P = 0 \)) if and only if the manifold is of constant curvature (pp. 84-85 of [16]). Thus, the projective curvature tensor is a measure of the failure of a Riemannian manifold to be of constant curvature.

The present paper is devoted to study \(\xi \) – projectively flat and \(\phi \) – projectively flat normal(a.c.m.) metric manifold of dimension 3. After preliminaries in section 3, we prove that a compact 3-dimensional normal (a.c.m.) manifold is \(\xi \) – projectively flat if and only if the manifold is \(\beta \) – Sasakian. In the next section, it is proved that a 3-dimensional normal (a.c.m.) manifold is \(\phi \) – projectively flat if and only if it is an Einstein manifold provided \(\alpha, \beta \) = constant. Finally we cited an example of a \(\phi \) – projectively flat normal almost contact metric manifold.

2. Preliminaries

For a normal (a.c.m.) structure \((\phi, \xi, \eta, g) \) on \(M \), we have [13]

\[
\nabla_X \xi = \alpha \{ X - \eta(X) \xi \} - \beta \phi X,
\]

where \(2 \alpha = \text{div} \xi \) and \(2 \beta = \text{tr}(\phi \nabla \xi) \), \(\text{div} \xi \) is the divergence of \(\xi \) defined by

\[
\text{div} \xi = \text{trace}(X \rightarrow \nabla_X \xi) \quad \text{and} \quad \text{tr}(\phi \nabla \xi) = \text{trace}(X \rightarrow \phi \nabla_X \xi).
\]

As a consequence of (2.1) we have

\[
(\nabla_X \phi)(Y) = g(\phi \nabla_X \xi, Y) \xi - \eta(Y) \phi \nabla_X \xi
= \alpha \{ g(\phi X, Y) \xi \} - \eta(Y) \phi X \} + \beta \{ g(X, Y) \xi \} - \eta(Y)X \},
\]

(2.2)
\[R(X, Y)\xi = \{Y\alpha + (\alpha^2 - \beta^2)\eta(Y)\}\phi^2 X - \{X\alpha + (\alpha^2 - \beta^2)\eta(X)\}\phi^2 Y \]
\[+ \{Y\beta + 2\alpha\beta\eta(Y)\}\phi X - \{X\beta + 2\alpha\beta\eta(X)\}\phi Y, \] (2.3)

UDAY CHAND DE AND ABUL KALAM MONDAL

\[S(X, Y) = \left(\frac{r}{2} + \xi\alpha + \alpha^2 + \beta^2\right)g(X, Y) - \left(\frac{r}{2} + \xi\alpha + 3(\alpha^2 - \beta^2)\right)\eta(X)\eta(Y) \]
\[- (\eta(Y)X\alpha + \eta(X)Y\alpha) - \{\eta(Y)(\phi X)\beta + \eta(X)(\phi Y)\beta\}, \] (2.4)
\[S(X, \xi) = -Y\alpha - (\phi(Y)\beta - \{\xi\alpha + 2(\alpha^2 - \beta^2)\}\eta(Y), \] (2.5)
\[\xi\beta + 2\alpha\beta = 0, \] (2.6)

where \(R \) denotes the curvature tensor and \(S \) is the Ricci tensor.

On the other hand, the curvature tensor in a 3-dimensional Riemannian manifold always satisfies
\[\tilde{R}(X, Y, Z, W) = g(X, W)S(Y, Z) - g(X, Z)S(Y, W) + g(Y, Z)S(X, W) \]
\[- g(Y, W)S(X, Z) - \frac{r}{2}[g(X, W)g(Y, Z) - g(X, Z)g(Y, W)], \] (2.7)

where \(\tilde{R}(X, Y, Z, W) = g(R(X, Y)Z, W) \) and \(r \) is the scalar curvature. From (2.3) we can derive that
\[\tilde{R}(\xi, Y, Z, \xi) = -(\xi\alpha + \alpha^2 + \beta^2)g(\phi Y, \phi Z) - (\xi\beta + 2\alpha\beta)g(\phi Y, \phi Z). \] (2.8)

By (2.5), (2.7) and (2.8) we obtain for \(\alpha, \beta = \text{constant}, \)
\[S(Y, Z) = \left(\frac{r}{2} + \alpha^2 - \beta^2\right)g(\phi Y, \phi Z) - 2(\alpha^2 - \beta^2)\eta(Y)\eta(Z). \] (2.9)

From (2.6) it follows that if \(\alpha, \beta = \text{constant}, \) then the manifold is either \(\beta - \text{Sasakian}, \) or \(\alpha - \text{Kenmotsu [10]} \) or cosymplectic [2].

Proposition 2.1. A 3-dimensional normal almost contact metric manifold with \(\alpha, \beta = \text{constant} \) is either \(\beta - \text{Sasakian}, \) or \(\alpha - \text{Kenmotsu or cosymplectic}. \)

Definition 1. An almost \(C(\lambda) - \text{manifold} \) \(M \) is an almost co-Hermitian manifold such that the Riemannian curvature tensor satisfies the following property: there exist \(\lambda \in R \) such that for all \(\xi, Y, Z, W \in T(M) \)
\[\tilde{R}(X, Y, Z, W) = \tilde{R}(X, Y, \phi Z, \phi W) + \{-g(X, Z)g(Y, W) + g(X, W)g(Y, Z) \]
\[+ g(X, \phi Z)g(Y, \phi W) - g(X, \phi W)g(Y, \phi Z)\}. \]
A normal almost $C(\lambda)$–manifold is a $C(\lambda)$–manifold. If we take $\lambda = -\alpha^2$ for $\alpha > 0$, then we get $C(\alpha^2)$–manifold. We note that β–Sasakian manifold are quasi-Sasakian [4]. They provide examples of $C(\lambda)$–manifolds with $\lambda \geq 0$. An α–Kenmotsu manifold is a $C(\alpha^2)$–manifold [10]. Cosymplectic manifolds provide a natural setting for time dependent mechanical systems as they are locally product of a Kaehler manifold and a real line or a circle [5].

THE STRUCTURE OF SOME CLASSES OF 3-DIMENSIONAL NORMAL ALMOST ……..

3. 3-dimensional ξ–projectively flat normal almost contact metric Manifolds

ξ–conformally flat K–contact manifolds have been studied by Zhen, Cabrerizo and Fernandez [20]. In this section we study ξ–projectively flat normal (a.c.m.) manifold. Analogous to the definition of ξ–conformally flat (a.c.m.) manifold we define ξ–projectively flat (a.c.m.) manifold.

Definition 3.1 A normal almost contact metric manifold M is called ξ–projectively flat if the condition $P(X, Y)\xi = 0$ holds on M, where projective curvature tensor P is defined by (1.3).

Putting $Z = \xi$ in (1.3) and using (2.3) and (2.5), we get

$$P(X, Y)\xi = -\frac{1}{2}\{(Y\alpha)X - (X\alpha)Y\} + \{(Y\alpha)\eta(X) - (X\alpha)\eta(Y)\} + (Y\beta)\phi X - (X\beta)\phi Y$$

$$+ 2\alpha\beta(\eta(Y)\phi X - \eta(X)\phi Y) + \frac{1}{2}[(\eta(Y)\beta X - (\phi X)\beta Y + (\xi\alpha)\{\eta(Y)X - \eta(X)Y\}].$$

(3.1)

Now assume that M is a compact 3-dimensional ξ–projectively flat normal (a.c.m.) manifold. Then from (3.1) we can write

$$-\frac{1}{2}\{(Y\alpha)X - (X\alpha)Y\} + \{(Y\alpha)\eta(X) - (X\alpha)\eta(Y)\} + (Y\beta)\phi X - (X\beta)\phi Y$$

$$+ 2\alpha\beta(\eta(Y)\phi X - \eta(X)\phi Y) + \frac{1}{2}[(\eta(Y)\beta X - (\phi X)\beta Y + (\xi\alpha)\{\eta(Y)X - \eta(X)Y\}] = 0.$$

(3.2)

Putting $Y = \xi$ in (3.2) and using (2.6), we obtain

$$(X\alpha)\xi + (\phi X)\beta\xi - (\xi\alpha)\eta(X)\xi = 0$$

which implies

$$(X\alpha) + (\phi X)\beta - (\xi\alpha)\eta(X) = 0.$$ (3.3)

Now (3.3) can be written as

$$(X\alpha) + g(grad\beta, \phi X) - (\xi\alpha)\eta(X) = 0.$$ (3.4)
Differentiating (3.4) covariantly along Y, we get
\[
\nabla_Y(X\alpha) + g(\nabla_Y \text{grad} \beta, \phi X) + g(\text{grad} \beta, (\nabla_Y \phi)X) - Y(\xi\alpha)\eta(X) - (\xi\alpha)(\nabla_Y \eta)(X) = 0. \tag{3.5}
\]

Hence, by antisymmetrization with respect to X and Y, we have from (3.5)

UDAY CHAND DE AND ABUL KALAM MONDAL

\[
g(\nabla_Y \text{grad} \beta, \phi X) - g(\nabla_X \text{grad} \beta, \phi Y) + g(\text{grad} \beta, (\nabla_Y \phi)X) - g(\text{grad} \beta, (\nabla_X \phi)Y) - Y(\xi\alpha)\eta(X) + X(\xi\alpha)\eta(Y) - (\xi\alpha)\{(\nabla_Y \eta)(X) - (\nabla_X \eta)(Y)\} = 0.
\]

This implies
\[
g(\nabla_Y \text{grad} \beta, \phi X) - g(\nabla_X \text{grad} \beta, \phi Y) + \{(\nabla_Y \phi)X\beta - (\nabla_X \phi)Y\beta\} - Y(\xi\alpha)\eta(X) + X(\xi\alpha)\eta(Y) + 2(\xi\alpha)d\eta(X,Y) = 0. \tag{3.6}
\]

Using (2.2) and $d\eta = \beta\phi$ [13], (3.6) yields
\[
g(\nabla_Y \text{grad} \beta, \phi X) - g(\nabla_X \text{grad} \beta, \phi Y) + \{2\alpha g(\phi Y, X)\xi - \alpha(\eta(X)\phi Y - \eta(Y)\phi X) - \beta(\eta(X)Y - \eta(Y)X)\beta - Y(\xi\alpha)\eta(X) + X(\xi\alpha)\eta(Y) + 2(\xi\alpha)\Phi(X,Y) = 0. \tag{3.7}
\]

Let $\{e_1, e_2, \xi\}$ be an orthonormal ϕ–basis where $\phi e_1 = -e_2$ and $\phi e_2 = e_1$. Taking $Y = e_1$ and $X = e_2$ in (3.7), we find that
\[
g(\nabla_{e_1} \text{grad} \beta, e_1) + g(\nabla_{e_2} \text{grad} \beta, e_2) = 2\alpha(\xi\beta) + 2\beta(\xi\alpha). \tag{3.8}
\]

On the other hand (2.6) yields $g(\text{grad} \beta, \xi) = -2\alpha\beta$, whence by covariant differentiation we get, on account of (2.1)
\[
g(\nabla_\xi \text{grad} \beta, \xi) = -2\alpha(\xi\beta) - 2\beta(\xi\alpha). \tag{3.9}
\]

Denoting by Δ the Laplacian defined by $\Delta = \text{divgrad}$, in view of (3.8) and (3.9) we have $\Delta\beta = 0$. Since M is compact, β is a constant.

Now if $\beta \neq 0$, (2.6) implies $\alpha = 0$. This implies M is a β–Sasakian manifold. Conversely, if M is a β–Sasakian manifold, then from (3.1) it is easy to see that $P(X,Y)\xi = 0$. Hence we can state the following:

Theorem 3.1. A compact 3-dimensional normal almost contact metric manifold is ξ–projectively flat if and only if it is a β–Sasakian manifold.
4. 3-dimensional ϕ–projectively flat normal almost contact metric manifolds

Analogous to the definition of ϕ–conformally flat contact metric manifold [6], we define ϕ–projectively flat normal almost contact metric manifold. In this connection we can mention the work of Ozgur [14] who has studied ϕ–projectively flat Lorentzian Para-Sasakian manifolds.

THE STRUCTURE OF SOME CLASSES OF 3-DIMENSIONAL NORMAL ALMOST…………

Definition 4.1 A 3-dimensional normal almost contact metric manifold satisfying the condition

$$\phi^2 P(\phi X, \phi Y)\phi Z = 0$$

is called ϕ–Projectively flat.

Let us assume that M is a 3-dimensional ϕ–projectively flat normal (a.c.m.) manifold. It can be easily seen that $\phi^2 P(\phi X, \phi Y)\phi Z = 0$ holds if and only if $g(P(\phi X, \phi Y)\phi Z, \phi W) = 0$, for $X, Y, Z, W \in T(M)$.

Using (1.3) and (1.1), ϕ–projectively flat means

$$g(R(\phi X, \phi Y)\phi Z, \phi W) = \frac{1}{2} \{S(\phi Y, \phi Z)g(\phi X, \phi W) - S(\phi X, \phi Z)g(\phi Y, \phi W)\}. \quad (4.1)$$

Let $\{e_1, e_2, \xi\}$ be a local orthonormal basis of the vector fields in M and using the fact that $\{\phi e_1, \phi e_2, \xi\}$ is also a local orthonormal basis. Putting $X = W = e_i$ in (4.1) and summing up with respect to i, then we have

$$\sum_{i=1}^{2} g(R(\phi e_i, \phi Y)\phi Z, \phi e_i) = \frac{1}{2} \sum_{i=1}^{2} \{S(\phi Y, \phi Z)g(\phi X, \phi W) - S(\phi X, \phi Z)g(\phi Y, \phi W)\}. \quad (4.2)$$

It can be easily verified that

$$\sum_{i=1}^{2} g(R(\phi e_i, \phi Y)\phi Z, \phi e_i) = S(\phi Y, \phi Z) + (\xi \alpha + \alpha^2 - \beta^2)g(\phi Y, \phi Z),$$

$$\sum_{i=1}^{2} g(\phi e_i, \phi e_i) = 2,$$

$$\sum_{i=1}^{2} S(\phi e_i, \phi Z)g(\phi Y, \phi e_i) = S(\phi Y, \phi Z).$$

So using (1.2) and (2.4), the equation (4.2) becomes
which gives \(r = -6(\xi \alpha + \alpha^2 - \beta^2) \). So we state the following:

Proposition 4.1. The scalar curvature \(r \) of a 3-dimensional \(\phi \)-projectively flat normal almost contact metric manifold is \(-6(\xi \alpha + \alpha^2 - \beta^2)\).

Also if \(r = -6(\xi \alpha + \alpha^2 - \beta^2) \), it follows from (2.4) that the manifold is an Einstein manifold provided \(\alpha, \beta = \text{constant} \). Hence we can state the following:

Proposition 4.2. A 3-dimensional \(\phi \)-projectively flat normal almost contact metric manifold is an Einstein manifold, provided \(\alpha, \beta = \text{constant} \).

It is known [17] that a 3-dimensional Einstein manifold is a manifold of constant curvature. Also \(M \) is projectively flat if and only if it is of constant curvature [16]. Now trivially, projectively flatness implies \(\phi \)-projectively flat. Hence using Proposition 4.2 we can state the following:

Theorem 4.1. A 3-dimensional normal almost contact metric manifold is \(\phi \)-projectively flat if and only if it is an Einstein manifold, provided \(\alpha, \beta = \text{constant} \).

5. Example of a 3-dimensional normal almost contact metric Manifold

We consider the 3-dimensional manifold \(M = \{(x, y, z) \in R^3, z \neq 0\} \), where \((x, y, z) \) are standard coordinate of \(R^3 \).

The vector fields
\[
e_1 = z \frac{\partial}{\partial x}, \quad e_2 = z \frac{\partial}{\partial y}, \quad e_3 = z \frac{\partial}{\partial z}
\]
are linearly independent at each point of \(M \).

Let \(g \) be the Riemannian metric defined by
that is, the form of the metric becomes

\[g = \frac{dx^2 + dy^2 + dz^2}{z^2}. \]

THE STRUCTURE OF SOME CLASSES OF 3-DIMENSIONAL NORMAL ALMOST…….

Let \(\eta \) be the 1-form defined by \(\eta(Z) = g(Z,e_3) \) for any \(Z \in T(M) \).

Let \(\phi \) be the (1, 1) tensor field defined by

\[\phi(e_1) = -e_2, \quad \phi(e_2) = e_1, \quad \phi(e_3) = 0. \]

Then using the linearity of \(\phi \) and \(g \), we have

\[\eta(e_3) = 1, \]

\[\phi^2 Z = -Z + \eta(Z)e_3, \]

\[g(\phi Z, \phi W) = g(Z, W) - \eta(Z)\eta(W), \]

for any \(Z, W \in T(M) \).

Then for \(e_3 = \xi \) the structure \((\phi, \xi, \eta, g)\) defines an almost contact metric structure on \(M \).

Let \(\nabla \) be the Levi-Civita connection with respect to the metric \(g \). Then we have

\[[e_1, e_3] = e_1 e_3 - e_3 e_1 = z \frac{\partial}{\partial x} (z \frac{\partial}{\partial z}) - z \frac{\partial}{\partial z} (z \frac{\partial}{\partial x}) = z^2 \frac{\partial^2}{\partial x \partial z} - z \frac{\partial}{\partial z} - z \frac{\partial}{\partial x} = -e_1. \]

Similarly, \([e_1, e_2] = 0\) and \([e_2, e_3] = -e_2\).

The Riemannian connection \(\nabla \) of the metric \(g \) is given by

\[2g(\nabla_X Y, Z) = Xg(Y, Z) + Yg(X, Z) - Zg(X, Y) - g(X, [Y, Z]) - g(Y, [X, Z]) + g(Z, [X, Y]), \quad (5.1) \]
which is known as Koszul’s formula.

Using (5.1) we have

\[2g(\nabla_{e_1} e_3, e_1) = -2g(e_1, e_1) = 2g(-e_1, e_1). \]

(5.2)

Again by (5.1)

\[2g(\nabla_{e_1} e_2, e_2) = 0 = 2g(-e_1, e_2). \]

(5.3)

and

\[2g(\nabla_{e_1} e_3, e_3) = 0 = 2g(-e_1, e_3). \]

(5.4)

UDAY CHAND DE AND ABUL KALAM MONDAL

From (5.2), (5.3) and (5.4) we obtain

\[2g(\nabla_{e_1} e_3, X) = 2g(-e_1, X). \]

for all \(X \in T(M) \).

Thus \(\nabla_{e_1} e_3 = -e_1 \).

Therefore, (5.1) further yields

\[
\begin{align*}
\nabla_{e_1} e_3 &= -e_1, \\
\nabla_{e_1} e_2 &= 0, \\
\nabla_{e_1} e_1 &= e_3,
\end{align*}
\]

(5.5)

(5.5) tells us that the manifold satisfies (2.1) for \(\alpha = -1 \) and \(\beta = 0 \) and \(\xi = e_3 \). Hence the manifold is a normal almost contact metric manifold with \(\alpha, \beta = \) constants.

It is known that

\[R(X, Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z. \]

(5.6)

With the help of the above results and using (5.6) it can be easily verified that

\[
\begin{align*}
R(e_1, e_2)e_3 &= 0, \\
R(e_2, e_3)e_3 &= -e_2, \\
R(e_1, e_3)e_3 &= -e_1, \\
R(e_1, e_2)e_3 &= -e_1, \\
R(e_2, e_3)e_2 &= e_3, \\
R(e_1, e_3)e_2 &= 0, \\
R(e_1, e_2)e_1 &= e_2, \\
R(e_2, e_3)e_1 &= 0, \\
R(e_1, e_3)e_1 &= e_3.
\end{align*}
\]

From the above expressions of the curvature tensor we obtain

\[S(e_1, e_1) = g(R(e_1, e_2)e_2, e_1) + g(R(e_1, e_3)e_3, e_1) = -2. \]

Similarly, we have

\[S(e_2, e_2) = 0. \]

Therefore

\[r = S(e_1, e_1) + S(e_2, e_2) + S(e_3, e_3) = -6. \]
We note that α, β and r are all constants. It is sufficient to check

$$S(e_i, e_j) = -2 = -2(\alpha^2 - \beta^2)g(e_i, e_j),$$

for all $i = 1, 2, 3$ and $\alpha = -1$ and $\beta = 0$. Hence M is an Einstein manifold. Therefore M is $\phi-$projectively flat. Thus Theorem 4.1 is verified.

THE STRUCTURE OF SOME CLASSES OF 3-DIMENSIONAL NORMAL ALMOST…………

Acknowledgement: The authors are thankful to the referees for their valuable comments and suggestions for the improvement of this paper.

References

Uday Chand De,
Department of Pure Mathematics,
University of Calcutta,
35, Ballygunge Circular Road,
Kolkata-700019,
West Bengal, India.
E-mail address: uc_de@yahoo.com

Abul Kalam Mondal,
Dum Dum Motijheel Robindra Mahavidyalaya,
208/B/2, Dum Dum Road,
Kolkata-700074,
West Bengal, India.
E-mail address: kalam_ju@yahoo.co.in